Pre-trained language models (PLMs) are engineered to be robust in contextual understanding and exhibit outstanding performance in various natural language processing tasks. However, their considerable size incurs significant computational and storage costs. Modern pruning strategies employ retraining-free one-shot techniques to compress PLMs; however, these approaches often lead to an indispensable reduction in performance. In this paper, we propose SDS, a Sparse-Dense-Sparse pruning framework to enhance the performance of the pruned PLMs from a weight distribution optimization perspective. We outline the pruning process in three steps. Initially, we prune less critical connections in the model using conventional one-shot pruning methods. Next, we reconstruct a dense model featuring a pruning-friendly weight distribution by reactivating pruned connections with sparse regularization. Finally, we perform a second pruning round, yielding a superior pruned model compared to the initial pruning. Experiments demonstrate that SDS outperforms the state-of-the-art pruning techniques SparseGPT and Wanda under an identical sparsity configuration. For instance, SDS reduces perplexity by 5.16 on Raw-Wikitext2 and improves average accuracy by 3.86% across multiple zero-shot benchmarks for LLaMA-3-8B compared to Wanda with 2:4 sparsity.
Large Language Models (LLMs) inherently use autoregressive decoding, which lacks parallelism in inference and results in significantly slow inference speed. While methods such as Medusa constructs parallelized heads, they lack adequate information interaction across different prediction positions. To overcome this limitation, we introduce Amphista, an enhanced speculative decoding framework that builds upon Medusa. Specifically, Amphista models an *Auto-embedding Block* capable of parallel inference, incorporating bi-directional attention to enable interaction between different drafting heads. Additionally, Amphista integrates *Staged Adaptation Layers*, which ensure a seamless transition of semantic information from the target model’s autoregressive inference to the drafting heads’ non-autoregressive inference, effectively achieving paradigm shift and feature fusion. Experimental results on Vicuna models using MT-Bench and Spec-Bench demonstrate that Amphista achieves substantial acceleration while maintaining generation quality. On MT-Bench, Amphista delivers up to **2.75×** speedup over vanilla autoregressive decoding and **1.40×** over Medusa on Vicuna 33B in wall-clock time.
Improving the efficiency of inference in Large Language Models (LLMs) is a critical area of research. Post-training Quantization (PTQ) is a popular technique, but it often faces challenges at low-bit levels, particularly in downstream tasks. Quantization-aware Training (QAT) can alleviate this problem, but it requires significantly more computational resources. To tackle this, we introduced Weight-Decomposed Low-Rank Quantization-Aware Training (DL-QAT), which merges the advantages of QAT while training only less than 1% of the total parameters. Specifically, we introduce a group-specific quantization magnitude to adjust the overall scale of each quantization group. Within each quantization group, we use LoRA matrices to update the weight size and direction in the quantization space. We validated the effectiveness of our method on the LLaMA and LLaMA2 model families. The results show significant improvements over our baseline method across different quantization granularities. For instance, for LLaMA-7B, our approach outperforms the previous state-of-the-art method by 4.2% in MMLU on 3-bit LLaMA-7B. Additionally, our quantization results on pre-trained models also surpass previous QAT methods, demonstrating the superior performance and efficiency of our approach.