Chong-Wah Ngo


2025

pdf bib
WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines
Genta Indra Winata | Frederikus Hudi | Patrick Amadeus Irawan | David Anugraha | Rifki Afina Putri | Wang Yutong | Adam Nohejl | Ubaidillah Ariq Prathama | Nedjma Ousidhoum | Afifa Amriani | Anar Rzayev | Anirban Das | Ashmari Pramodya | Aulia Adila | Bryan Wilie | Candy Olivia Mawalim | Cheng Ching Lam | Daud Abolade | Emmanuele Chersoni | Enrico Santus | Fariz Ikhwantri | Garry Kuwanto | Hanyang Zhao | Haryo Akbarianto Wibowo | Holy Lovenia | Jan Christian Blaise Cruz | Jan Wira Gotama Putra | Junho Myung | Lucky Susanto | Maria Angelica Riera Machin | Marina Zhukova | Michael Anugraha | Muhammad Farid Adilazuarda | Natasha Christabelle Santosa | Peerat Limkonchotiwat | Raj Dabre | Rio Alexander Audino | Samuel Cahyawijaya | Shi-Xiong Zhang | Stephanie Yulia Salim | Yi Zhou | Yinxuan Gui | David Ifeoluwa Adelani | En-Shiun Annie Lee | Shogo Okada | Ayu Purwarianti | Alham Fikri Aji | Taro Watanabe | Derry Tanti Wijaya | Alice Oh | Chong-Wah Ngo
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.

2023

pdf bib
CONE: An Efficient COarse-to-fiNE Alignment Framework for Long Video Temporal Grounding
Zhijian Hou | Wanjun Zhong | Lei Ji | Difei Gao | Kun Yan | W.k. Chan | Chong-Wah Ngo | Mike Zheng Shou | Nan Duan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This paper tackles an emerging and challenging problem of long video temporal grounding (VTG) that localizes video moments related to a natural language (NL) query. Compared with short videos, long videos are also highly demanded but less explored, which brings new challenges in higher inference computation cost and weaker multi-modal alignment. To address these challenges, we propose CONE, an efficient COarse-to-fiNE alignment framework. CONE is a plug-and-play framework on top of existing VTG models to handle long videos through a sliding window mechanism. Specifically, CONE (1) introduces a query-guided window selection strategy to speed up inference, and (2) proposes a coarse-to-fine mechanism via a novel incorporation of contrastive learning to enhance multi-modal alignment for long videos. Extensive experiments on two large-scale long VTG benchmarks consistently show both substantial performance gains (e.g., from 3.13 to 6.87% on MAD) and state-of-the-art results. Analyses also reveal higher efficiency as the query-guided window selection mechanism accelerates inference time by 2x on Ego4D-NLQ and 15x on MAD while keeping SOTA results. Codes have been released at https://github.com/houzhijian/CONE.

2010

pdf bib
Automatic Generation of Semantic Fields for Annotating Web Images
Gang Wang | Tat Seng Chua | Chong-Wah Ngo | Yong Cheng Wang
Coling 2010: Posters

OSZAR »