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Abstract

This paper presents an easy-to-adapt,
discourse-aware framework that can be
utilized as the content selection compo-
nent of a generation system whose goal is
to deliver descriptive texts in several turns.
Our framework involves a novel use of a
graph-based ranking algorithm, to itera-
tively determine what content to convey to
a given request while taking into account
various considerations such as capturing a
priori importance of information, convey-
ing related information, avoiding redun-
dancy, and incorporating the effects of dis-
course history. We illustrate and evaluate
this framework in an accessibility system
for sight-impaired individuals.

1 Introduction

Content selection is the task responsible for deter-
mining what to convey in the output of a gener-
ation system at the current exchange (Reiter and
Dale, 1997). This very domain dependent task
is extremely important from the perspective of
users (Sripada et al., 2001) who have been ob-
served to be tolerant of realization problems as
long as the appropriate content is expressed. The
NLG community has proposed various content
selection approaches since early systems (Moore
and Paris, 1993; McKeown, 1985) which placed
emphasis on text structure and adapted planning
techniques or schemas to meet discourse goals.

This paper proposes a domain-independent
framework which can be incorporated as a content
selection component in a system whose goal is to
deliver descriptive or explanatory texts, such as the
ILEX (O’Donnell et al., 2001), KNIGHT (Lester
and Porter, 1997), and POLIBOX (Chiarcos and
Stede, 2004) systems. At the core of our frame-
work lies a novel use of a graph-based ranking al-

gorithm, which exploits discourse related consid-
erations in determining what content to convey in
response to a request for information. This frame-
work provides the ability to generate successive
history-aware texts and the flexibility to generate
different texts with different parameter settings.

One discourse consideration is the tenet that the
propositions selected for inclusion in a text should
be in some way related to one another. Thus,
the selection process should be influenced by the
relevanceof information to what has already been
selected for inclusion. Moreover, we argue that
if the information given in a proposition can be
deduced from the information provided by any
other proposition in the text, this would introduce
redundancyand should be avoided.

Many systems (such as MATCH (Walker et al.,
2004) and GEA (Carenini and Moore, 2006)) con-
tain a user model which is employed to adapt con-
tent selection to the user’s preferences (Reiter and
Dale, 1997). Our framework provides a facility
to model a stereotypical user by incorporating the
a priori importanceof propositions. This facility
can also be used to capture the preferences of a
particular user.

In a dialogue system, utterances that are gen-
erated without exploiting the previous discourse
seem awkward and unnatural (Moore, 1993). Our
framework takes the previous discourse into ac-
count so as to omit recently communicated propo-
sitions and to determine when repetition of a pre-
viously communicated proposition is appropriate.

To our knowledge, our work is the first effort
utilizing a graph-based ranking algorithm for con-
tent selection, while taking into account what in-
formation preferably should and shouldn’t be con-
veyed together, the a priori importance of infor-
mation, and the discourse history. Our framework
is a domain-independent methodology containing
domain-dependent features that must be instanti-
ated when applying the methodology to a domain.



Section 2 describes our domain-independent
methodology for determining the content of a re-
sponse. Section 3 illustrates its application in an
accessibility system for sight-impaired individuals
and shows the generation flexibility provided by
this framework. Finally, Section 4 discusses the
results of user studies conducted to evaluate the
effectiveness of our methodology.

2 A Graph-based Content Selection
Framework

Our domain-independent framework can be ap-
plied to any domain where there is a set of proposi-
tions thatmightbe conveyed and where a bottom-
up strategy for content selection is appropriate. It
is particularly useful when the set of propositions
should be delivered a little at a time. For exam-
ple, the ILEX system (O’Donnell et al., 2001) uses
multiple descriptions to convey the available infor-
mation about a museum artifact, since the length
of the text that can be displayed on a page is lim-
ited. In order to use our framework, an application
developer should identify the set of propositions
that might be conveyed in the domain, specify the
relations between these propositions, and option-
ally assess a priori importance of the propositions.

Our framework uses a weighted undirected
graph (relation graph), where the propositions
are captured as vertices of the graph and the
edges represent relations between these proposi-
tions. While the number and kinds of relations
represented is up to the developer, the frame-
work does require the use of one specific rela-
tion (Redundancy Relation) that is generalizable
to any descriptive domain. RedundancyRelation
must be specified between two propositions if they
provide similar kinds of information or the infor-
mation provided by one of the propositions can
be deduced from the information provided by the
other. For example, consider applying the frame-
work to the ILEX domain. Since the proposition
that “this jewelry is produced by a single crafts-
man” can be deduced from the proposition that
“this jewelry is made by a British designer”, these
propositions should be connected with a Redun-
dancyRelation in the relationgraph.

There is at most one edge between any two ver-
tices and the weight of that edge represents how
important it is to convey the corresponding propo-
sitions in the same text (which we refer to as
the strength of the relation between these proposi-

tions). For example, suppose that once a museum
artifact is introduced in ILEX, it is more impor-
tant to convey its design style in the same descrip-
tion as opposed to where it is produced. In this
case, the weight of the edge between the proposi-
tions introducing the artifact and its style should
be higher than the weight of the edge between the
propositions introducing the artifact and its pro-
duction place.

The framework incorporates a stereotyp-
ical user model via an additional vertex
(priority vertex) in the relationgraph. The
priority vertex is connected to all other vertices
in the graph. The weight of the edge between
a vertex and the priorityvertex represents the a
priori importance of that vertex, which in turn
specifies the importance of the corresponding
proposition. For example, suppose that in the
ILEX domain an artifact has two features that
are connected to the proposition introducing the
artifact by the “feature-of” relation. The a priori
importance of one of these features over the
other can be specified by giving a higher weight
to the edge connecting this proposition to the
priority vertex than is given to the edge between
the other feature and the priorityvertex. This
captures a priori importance and makes it more
likely that the important feature will be included
in the artifact’s description.

2.1 Our Ranking Algorithm

With this graph-based setting, the most important
thing to say is the proposition which is most cen-
tral. Several centrality algorithms have been pro-
posed in the literature (Freeman, 1979; Navigli
and Lapata, 2007) for calculating the importance
scores of vertices in a graph. The well-known
PageRank centrality (Brin and Page, 1998) calcu-
lates the importance of a vertex by taking into ac-
count the importance of all other vertices and the
relation of vertices to one another. This metric has
been applied to various tasks such as word sense
disambiguation (Sinha and Mihalcea, 2007) and
text summarization (Erkan and Radev, 2004). We
adopted the weighted PageRank metric (Sinha and
Mihalcea, 2007) for our framework and therefore
compute the importance score of a vertex (Vx) as:

PR(V x) = (1− d) + d ∗

∑

(V x,V y)∈E

wyx∑
wyz

(V z ,V y)∈E

PR(V y)

wherewxy is the weight associated with the edge
between vertices (Vx) and (Vy), E is the set of all



edges, and d is the damping factor, set to 0.85,
which is its usual setting.

Once the propositions in a domain are captured
in a relationgraph with weights assigned to the
edges between them, the straightforward way of
identifying the propositions to be conveyed in the
generated text would be to calculate the impor-
tance of each vertex via the formula above and
then select the k vertices with the highest scores.
However, this straightforward application would
fail to address the discourse issues cited earlier.
Thus we select propositions incrementally, where
with each proposition selected, weights in the
graph are adjusted causing related propositions to
be highlighted and redundant information to be re-
pelled. Because our responses are delivered over
several turns, we also adjust weights between re-
sponses to reflect that discourse situation.

Our algorithm, shown in Figure 1, is run each
time a response text is to be generated. For each
new response, the algorithm begins by adjusting
the importance of the priorityvertex (making it
high) and clearing the list of selected propositions.
Step2 is the heart of the algorithm for generating a
single response. It incrementally selects proposi-
tions to include in the current response, and ad-
justs weights to reflect what has been selected.
In particular, in order to select a proposition, im-
portance scores are computed using the weighted
PageRank metric for all vertices corresponding to
propositions that have not yet been selected for in-
clusion in this response (Step2-a), and only the
proposition that receives the highest score is se-
lected (Step2-b). Then, adjustments are made to
achieve four goals toward taking discourse infor-
mation into account (Steps2-c thru2-g) before the
PageRank algorithm is run again to select the next
proposition. Steps3 and4 adjust weights to reflect
the completed response and to prepare for gener-
ating the next response.

Our first goal is to reflect the a priori impor-
tance of propositions in the selection process. For
this purpose, we always assign the highest (or
one of the highest) importance scores to the pri-
ority vertex among the other vertices (Steps1 and
2-g). This will make the priorityvertex as influen-
tial as any other neighbor of a vertex when calcu-
lating its importance.

Our second goal is to select propositions that are
relevant to previously selected propositions, or in
terms of the graph-based notation, toattract the

selection of vertices that are connected to the se-
lected vertices. To achieve this, we increase the
importance of the vertices corresponding to se-
lected propositions so that the propositions related
to them have a higher probability of being chosen
as the next proposition to include (Step2-g).

Our third goal is to avoid selecting propositions
that preferably shouldn’t be communicated with
previously selected propositions if other related
propositions are available. To accomplish this, we
introduce the termrepellers to refer to the kinds
of relations between propositions that are dispre-
ferred over other relations once one of the propo-
sitions is selected for inclusion. Once a proposi-
tion is selected, we penalize the weights on the
edges between the corresponding vertex and other
vertices that are connected by a repeller (Step2-
d). We don’t provide any general repellers in the
framework, but rather this is left for the developer
familiar with the domain; any number (zero or
more) and kinds of relations could be identified as
repellers for a particular application domain. For
example, suppose that in the ILEX domain, some
artifacts (such as necklaces) have as features both
a set of design characteristics and the person who
found the artifact. Once the artifact is introduced,
it becomes more important to present the design
characteristics rather than the person who found
that artifact. This preference might be captured by
classifying the relation connecting the proposition
conveying the person who found it to the proposi-
tion introducing the artifact as arepeller.

Our fourth goal is to avoid redundancy by dis-
couraging the selection of propositions connected
by a RedundancyRelation to previously selected
propositions. Once a proposition is selected, we
identify the vertices(redundant to selected ver-
tices) which are connected to the selected ver-
tex by the RedundancyRelation (Step2-e). For
each redundantto selected vertex, we penalize the
weights on the edges of the vertex except the edge
connected to the priorityvertex (Step2-f) and
hence decrease the probability of that vertex being
chosen for inclusion in the same response.

We have so far described how the content of a
single response is constructed in our framework.
To capture a situation where the system is engaged
in a dialogue with the user and must generate addi-
tional responses for each subsequent user request,
we need to ensure that discourse flows naturally.
Thus, the ranking algorithm must take the previ-



Figure 1: Our Ranking Algorithm for Content Selection.

ous discourse into account in order to identify and
preferably select propositions that have not been
conveyed before and to determine when repetition
of a previously communicated proposition is ap-
propriate. So once a proposition is included in a
response, we have to reduce its ability to compete
for inclusion in subsequent responses. Thus once a
proposition is conveyed in a response, the weight
of the edge connecting the corresponding vertex
to the priority vertex is reduced (Step2-c in Fig-
ure 1). Once a response is completed, we penal-
ize the weights of the edges of each vertex that
has been selected for inclusion in the current re-
sponse via a penalty factor (if they aren’t already
adjusted) (Step3 in Figure 1). We use the same
penalty factor (which is used in Step2-d in Fig-
ure 1) on each edge so that all edges connected to
a selected vertex are penalized equally. However,
it isn’t enough just to penalize the edges of the ver-
tices corresponding to the communicated proposi-
tions. Even after the penalties are applied, a propo-
sition that has just been communicated might re-
ceive a higher importance score than an uncommu-
nicated proposition1. In order to allow all propo-
sitions to become important enough to be said at
some point, the algorithm increases the weights
of the edges of all other vertices in the graph if
they haven’t already been decreased (Step4 in Fig-
ure 1), thereby increasing their ability to compete
in subsequent responses. In the current implemen-
tation, the weight of an edge is increased via a
boost factor after a response if it is not connected
to a proposition included in that response. The

1We observed that it might happen if a vertex is connected
only to the priorityvertex.

boost factor ensures that all propositions will even-
tually become important enough for inclusion.

3 Application in a Particular Domain

This section illustrates the application of our
framework to a particular domain and how our
framework facilitates flexible content selection.
Our example is content selection in the SIGHT
system (Elzer et al., 2007), whose goal is to pro-
vide visually impaired users with the knowledge
that one would gain from viewing information
graphics (such as bar charts) that appear in popu-
lar media. In the current implementation, SIGHT
constructs a brief initial summary (Demir et al.,
2008) that conveys the primary message of a bar
chart along with its salient features. We enhanced
the current SIGHT system to respond to user’s
follow-up requests for more information about the
graphic, where the request does not specify the
kind of information that is desired.

The first step in using our framework is deter-
mining the set of propositions that might be con-
veyed in this domain. In our earlier work (Demir
et al., 2008), we identified a set of propositions
that capture information that could be determined
by looking at a bar chart, and for each message
type defined in SIGHT, specified a subset of these
propositions that are related to this message type.
In our example, we use these propositions as can-
didates for inclusion in follow-up responses. Fig-
ure 2 presents a portion of the relationgraph,
where some of the identified propositions are rep-
resented as vertices.

The second step is optionally assessing the a
priori importance of each proposition. In user



Figure 2: Subgraph of the Relationgraph for Increasing and Decreasing Trend Message Types.

studies (Demir et al., 2008), we asked subjects to
classify the propositions given for a message type
into one of three classes according to their impor-
tance for inclusion in the initial summary:essen-
tial, possible, andnot important. We leverage
this information as the a priori importance of ver-
tices in our graph representation. We define three
priority classes. For the propositions that were not
selected asessentialby any participant, we clas-
sify the edges connecting these propositions to the
priority vertex intoPossible class. For the propo-
sitions which were selected asessentialby a single
participant, we classify the edges connecting them
to the priority vertex intoImportant class. The
edges of the remaining propositions are classified
into Highly Important class. In this example in-
stantiation, we assigned different numeric scores
to these classes where HighlyImportant and Pos-
sible received the highest and lowest scores re-
spectively.

The third step requires specifying the relations
between every pair of related propositions and de-
termining the weights associated with these re-
lations in the relationgraph. First, we identi-
fied propositions which we decided should be
connected by the RedundancyRelation (such as
the propositions conveying “the overall amount of
change in the trend” and “the range of the trend”).
Next, we had to determine other relations and as-
sign relative weights. Instead of defining a unique
relation for each related pair, we defined three re-
lation classes, and assigned the relations between
related propositions to one of these classes:

∙ Period Relation: expresses a relation be-
tween two propositions that span the same
time period

∙ Entity Relation: expresses a relation be-
tween two propositions if the entities in-
volved in the propositions overlap

∙ Contrast Relation: expresses a relation be-
tween two propositions if the information
provided by one of the propositions contrasts
with the information provided by the other

We determined that it was very common in
this domain to deliver contrasting propositions to-
gether (similar to other domains (Marcu, 1998))
and therefore we assigned the highest score to the
ContrastRelation class. For local focusing pur-
poses, it is desirable that propositions involving
common entities be delivered in the same response
and thus the EntityRelation class was given the
second highest score. On the other hand, two
propositions which only share the same period are
not very related and conveying such propositions
in the same response could cause the text to appear
“choppy”. We thus identified the PeriodRelation
class as a repeller and assigned the second low-
est score to relations in that class. Since we don’t
want redundancy in the generated text, the lowest
score was assigned to the RedundancyRelation
class. The next section shows how associating
particular weights with the priority and relation
classes changes the behavior of the framework.

In the domain of graphics, a collection of de-
scriptions of the targeted kind which would facil-
itate a learning based model isn’t available. How-
ever, the accessibility of a corpus in a new domain
would allow the identification of the propositions
along with their relations to each other and the de-
termination of what weighting scheme and adjust-
ment policy will produce the corpus within reason-
able bounds.



3.1 Generating Flexible Responses

The behavior of our framework is dependent on a
number of design parameters such as the weights
associated with various relations, the identification
of repellers, the a priori importance of informa-
tion (if applicable), and the extent to which con-
veying redundant information should be avoided.
The framework allows the application developer
to adjust these factors resulting in the selection of
different content and the generation of different re-
sponses. For instance, in a very straightforward
setting where the same numeric score is assigned
to all relations, the a priori importance of infor-
mation would be the major determining factor in
the selection process. In this section, we will il-
lustrate our framework’s behavior in SIGHT with
three different scenarios. In each case, the user is
assumed to post two consecutive requests for ad-
ditional information about the graphic in Figure 3
after receiving its initial summary.

In our first scenario (which we refer to as “base-
setting”), the following values have been given to
various design parameters that must be specified in
order to run the ranking algorithm. 1) The weights
of the relations are set to the numeric scores shown
in the text labelledEdges at the bottom (right side)
of Figure 2. 2) The stopping criteriawhich speci-
fies the number of propositions selected for inclu-
sion in a follow-up response (Step2 in Figure 1)
is set to four. 3) The amount of decrease in the
weight of the edge between the priorityvertex and
the vertex selected for inclusion (Step2-c in Fig-
ure 1) is set to that edge’s original weight. Thus,
in our example, the weight of that edge is set to 0
once a proposition has been selected for inclusion.
4) The penalty and the redundancy penalty factors
which are used to penalize the edges of a selected
vertex and the vertices redundant to the selected
vertex (Steps2-d and3, and2-f in Figure 1) are
set to the quotient of the highest numeric score
initially assigned to a relation class divided by the
lowest numeric score initially assigned to a rela-
tion class. A penalized score for a relation class
is computed by dividing its initial score by the
penalty factor. The edges of a vertex are penalized
by assigning the penalized scores to these edges
based on the relations that they represent. This set-
ting guarantees that the weight of an edge which
represents the strongest relation cannot be penal-
ized to be lower than the score initially assigned
to the weakest relation. 5) The boost factorwhich

is used to favor the selection of previously uncon-
veyed propositions for inclusion in subsequent re-
sponses (Step4 in Figure 1) is set to the square
root of the penalty factor. Thus, the weights of
the edges connected to vertices of previously com-
municated propositions are restored to their initial
scores slowly.

Since in our example, the initial summary has
already been presented, we treat the propositions
conveyed in that summary (P1 and P5 in Figure 2)
as if they had been conveyed in a follow-up re-
sponse and penalize the edges of their correspond-
ing vertices (Steps2-c and3 in Figure 1). Thus,
before we invoke the algorithm to construct the
first follow-up response, the weights of edges of
the graph are as shown in Figure 2-A. Within this
base-setting, SIGHT generates the set of follow-up
responses shown in Figure 3A.

In our first scenario (base-setting), we assumed
that the user is capable of making mathematical
deductions such as inferring “the overall amount
of change in the trend” from “the range of the
trend”; thus we identified such propositions as
sharing a RedundancyRelation. Young read-
ers (such as fourth graders) might not find these
propositions as redundant because they are lack-
ing in mathematical skills. In our second sce-
nario, we address this issue by setting the re-
dundancy penalty factor to 1 (Step 2-f in Fig-
ure 1) and thus eliminate the penalty on the Re-
dundancyRelation. Now, for the same graphic,
SIGHT generates, in turn, the second alternative
set of responses shown in Figure 3B. The re-
sponses for the two scenarios differ in the second
follow-up response. In the first scenario, a descrip-
tion of the smallest drop was included. However,
in the second scenario, this proposition is replaced
with the overall amount of change in the trend.
This proposition was excluded in the first sce-
nario because the redundancy penalty factor made
it drop in importance.

Our third scenario shows how altering the
weights assigned to relations may change the re-
sponses. Consider a situation where the Con-
trastRelation is given even higher importance by
doubling its score; this might occur in a univer-
sity course domain where courses on the same
general topic are contrasted. SIGHT would then
generate the third alternative set of follow-up re-
sponses shown in Figure 3C. The algorithm is
more strongly forced to group propositions that



Figure 3: Initial Summary and Follow-up Responses.

are in a contrast relation (shown in bold), which
changes the ranking of these propositions.

4 Evaluation

To determine whether our framework selects ap-
propriate content within the context of an applica-
tion, and to assess the contribution of the discourse
related considerations to the selected content and
their impact on readers’ satisfaction, we conducted
two user studies. In both studies, the partici-
pants were told that the initial summary should
include the most important information about the
graphic and that the remaining pieces of informa-
tion should be conveyed via follow-up responses.
The participants were also told that the informa-
tion in the first response should be more important
than the information in subsequent responses.

Our goal in the first study was to evaluate the
effectiveness of our framework (base-setting) in
determining the content of follow-up responses in
SIGHT. To our knowledge, no one else has gener-

ated high-level descriptions of information graph-
ics, and therefore evaluation using implementa-
tions of existing content selection modules in the
domain of graphics as a baseline is not feasible.
Thus, we evaluated our framework by comparing
the content that it selects for inclusion in a follow-
up response for a particular graphic with the con-
tent chosen by human subjects for the same re-
sponse. Twenty one university students partici-
pated in the first study and each participant was
presented with the same four graphics. For each
graphic, the participants were first presented with
its initial summary and the set of propositions (18
different propositions) that were used to construct
the relationgraph in our framework. The partic-
ipants were then asked to select the four propo-
sitions that they thought were most important to
convey in the first follow-up response.

For each graphic, we ranked the propositions
with respect to the number of times that they were
selected by the participants and determined the po-
sition of each proposition selected by our frame-



work for inclusion in the first follow-up response
with respect to this ranking. The propositions se-
lected by our framework were ranked by the par-
ticipants as the1st, 2nd, 3rd, and 5thin the first
graphic, as the1st, 3rd, 4th, and 5thin the sec-
ond graphic, as the1st, 2nd, 3rd, and 6thin the
third graphic, and as the2nd, 3rd, 4th, and 6th
in the fourth graphic. Thus for every graph, three
of the four propositions selected by our frame-
work were also in the top four highly-rated propo-
sitions selected by the participants. Therefore,
this study demonstrated that our content selection
framework selects the most important information
for inclusion in a response at the current exchange.

We argued that simply running PageRank to se-
lect the highly-rated propositions is likely to lead
to text that does not cohere because it may con-
tain unrelated or redundant propositions, or fail
to communicate related propositions. Thus, our
approach iteratively runs PageRank and includes
discourse related factors in order to allow what
has been selected to influence the future selections
and consequently improve text coherence. To ver-
ify this argument, we conducted a second study
with four graphics and two different sets of follow-
up responses (each consisting of two consecutive
responses) generated for each graphic. We con-
structed the first set of responses(baseline) by
running PageRank to completion and selecting the
top eight highly-rated propositions, where the top
four propositions form the first response. The con-
tent of the second set of responses was identified
by our approach. Twelve university students (who
did not participate in the first study) were pre-
sented with these four graphics along with their
initial summaries. Each participant was also pre-
sented with the set of responses generated by our
approach in two graphics and the set of responses
generated by the baseline in other cases; the par-
ticipants were unaware of how the follow-up re-
sponses were generated. Overall, each set of re-
sponses was presented to six participants.

We asked the participants to evaluate the set
of responses in terms of their quality in convey-
ing additional information (from 1 to 5 with 5 be-
ing the best). We also asked each participant to
choose which set of responses (from among the
four sets of responses presented to them) best pro-
vides further information about the correspond-
ing graphic. The participants gave the set of re-
sponses generated by our approach an average rat-

ing of 4.33. The average participant rating for
the set of responses generated by the baseline was
3.96. In addition, the lowest score given to the
set of responses generated by our approach was
3, whereas the lowest score that the baseline re-
ceived was 2. We also observed that the set of re-
sponses generated by our approach was selected
as the best set by eight of the twelve participants.
Three of the remaining four participants selected
the set of responses generated by the baseline as
best (although they gave the same score to a set
of responses generated by our approach). In these
cases, the participants emphasized the wording
of the responses as the reason for their selection.
Thus this study demonstrated that the inclusion of
discourse related factors in our approach, in addi-
tion to the use of PageRank (which utilizes the a
priori importance of the propositions and their re-
lations to each other), contributes to text coherence
and improves readers’ satisfaction.

5 Conclusion

This paper has presented our implemented
domain-independent content selection framework,
which contains domain-dependent features that
must be instantiated when applying it to a particu-
lar domain. To our knowledge, our work is the first
to select appropriate content by using an incre-
mental graph-based ranking algorithm that takes
into account the tendency for some information to
seem related or redundant to other information, the
a priori importance of information, and what has
already been said in the previous discourse. Al-
though our framework requires a knowledge engi-
neering phase to port it to a new domain, it handles
discourse issues without requiring that the devel-
oper write code to address them. We have demon-
strated how our framework was incorporated in
an accessibility system whose goal is the genera-
tion of texts to describe information graphics. The
evaluation studies of our framework within that
accessibility system show its effectiveness in de-
termining the content of follow-up responses.
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