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Abstract

Linear-chain Conditional Random Fields
(CRF) has been applied to perform the
Named Entity Recognition (NER) task in
many biomedical text mining and infor-
mation extraction systems. However, the
linear-chain CRF cannot capture long dis-
tance dependency, which is very common
in the biomedical literature. In this pa-
per, we propose a novel study of capturing
such long distance dependency by defin-
ing two principles of constructing skip-
edges for a skip-chain CRF: linking sim-
ilar words and linking words having typed
dependencies. The approach is applied to
recognize gene/protein mentions in the lit-
erature. When tested on the BioCreAtIvE
II Gene Mention dataset and GENIA cor-
pus, the approach contributes significant
improvements over the linear-chain CRF.
We also present in-depth error analysis on
inconsistent labeling and study the influ-
ence of the quality of skip edges on the la-
beling performance.

1 Introduction

Named Entity Recognition (NER) is a key task in
most text mining and information extraction sys-
tems. The improvement in NER can benefit the
final system performance. NER is a challenging
task, particularly in the biomedical literature due
to the variety of biomedical terminologies and the
complicated syntactic structures.

Many studies have been devoted to biomedical
NER. To evaluate biomedical NER systems, sev-
eral challenge competitions had been held, such
as BioNLP/NLPBA in 20041, BioCreAtIvE I in
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workshops/JNLPBA04st.htm

2004 and BioCreAtIvE II in 20062. The overview
reports from these competitions, presenting state-
of-the-art of biomedical NER studies, show that
linear-chain Conditional Random Fields (CRF) is
one of the most commonly used models and has
the most competitive results (Yeh et al., 2005;
Smith et al., 2008). Linear-chain CRF has also
been successfully applied to other NLP tasks such
as POS-tagging (Lafferty et al., 2001) and sen-
tence chunking (Sha and Pereira, 2003). However,
in most of these applications, only linear-chain
CRF was fully exploited, assuming that only adja-
cent words are inter-dependent. The dependency
between distant words, which occurs frequently in
the biomedical literature, is yet to be captured.

In the biomedical literature, the repeated ap-
pearance of same or similar words in one sentence
is a common type of long distance dependencies.
This phenomenon is due to the complicated syn-
tactic structures and the various biomedical termi-
nologies in nature. See the following example:

“Both GH deficiency and impaired
spinal growth may result in short
stature, whereas the occurrence of early
puberty in association with GH defi-
ciency reduces the time available for
GH therapy.”

the mentions of GH are repeated three times. If
the entity are referred by a pronoun, the meaning
of the sentence will be confusing and unclear be-
cause of the complex sentence structure. In this
sentence:

“These 8-oxoguanine DNA glycosy-
lases, hOgg1 (human) and mOgg1
(murine) , are homologous to each other
and to yeast Ogg1.”

the words hOgg1, mOgg1 and Ogg1 are homolo-
gous genes belonging to different species, having

2http://www.biocreative.org/

10



very similar entity names. Some other types of
long distance dependencies also occur frequently
in the biomedical literature. For example, in this
sentence

“Western immunoblot analysis detected
p55gag and its cleavage products p39
and p27 in purified particles derived by
expression of gag and gag-pol, respec-
tively.”

the words p55gag, p39 and p27 conjuncted by
and, have similar semantic meanings but they are
separated by several tokens. A human curator
can easily recognize such long distance dependen-
cies and annotate these words consistently. How-
ever, when applying the linear-chain CRF, incon-
sistency errors in annotating these entities could
happen due to the inability of representing long
distance dependency.

In this paper, we present an approach of cap-
turing long distance dependencies between words.
We adopte the skip-chain CRF to improve the per-
formance of gene mention recognition. We de-
fine two principles of connecting skip-edges for
skip-chain CRF to capture long distance depen-
dencies. The efficacy of the principles is inves-
tigated with extensive experiments. We test our
method on two data sets and significant improve-
ments are observed over the linear-chain CRF. We
present in-depth error analysis on inconsistent la-
beling. We also investigat whether the quality of
connected edges affect the labeling performance.

The remainder of this paper is organized as fol-
lows: We survey related studies in Section 2. We
introduce linear-chain CRF and skip-chain CRF in
Section 3. The method of connecting skip-chain
edges is described in Section 4 . In Section 5 we
present our experiments and in-depth analysis. We
summarize our work in Section 6.

2 Related work

NER is a widely studied topic in text mining
research, and many new challenges are seen in
domain-specific applications, such as biomedical
NER (Zhou et al., 2004). The dictionary based
method is a common technique as biomedical the-
sauruses play a key role in understanding such
text. Most dictionary based NER systems fo-
cused on: (1) integrating and normalizing differ-
ent biomedical databases to improve the quality of
the dictionary to be used; (2) improving matching

strategies that are more suitable for biomedical ter-
minologies; and (3) making filtering rules for post-
processing to refine the matching results or to ad-
just the boundary of entities, see (Fukuda et al.,
1998; Narayanaswamy et al., 2003; Yang et al.,
2008). Many information extraction systems had
a dictionary matching module to perform prelim-
inary detection of named entities (Schuhmann et
al., 2007; Kolarik et al., 2007; Wang et al., 2010).

Applying machine learning techniques gener-
ally obtains superior performance for the biomedi-
cal NER task. The automated learning process can
induce patterns for recognizing biomedical names
and rules for pre- and post-processing. Gener-
ally speaking, there are two categories of ma-
chine learning based methods: one treats NER as
a classification task, while the other treats NER
as a sequence labeling task. For the first cate-
gory, Support Vector Machine (SVM) was a com-
monly adopted model (Kazama et al., 2002; Zhou
et al., 2004). Lee et al. (2004) proposed a two-
step framework to perform biomedical NER using
SVM: firstly detecting the boundaries of named
entities using classifiers; secondly classifying each
named entity into predefined target types. For the
second category, a sentence was treated as a se-
quence of tokens and the objective was to find the
optimal label sequence for these tokens. The label
space was often defined as {B,I,O}, where B in-
dicates the beginning token of an entity, I denotes
the continuing token and O represents the token
outside an entity. The sequence labeling task can
be approached by Hidden Markov Model (HMM),
Conditional Random Field (CRF) , or a combina-
tion of different models (Zhou et al., 2005; Tatar
and Cicekli, 2009).

Since proposed in (Lafferty et al., 2001), CRF
has been applied to many sequence labeling
tasks, including recognizing gene mentions from
biomedical text (McDonald and Pereira, 2005).
The Gene Mention Recognition task was included
in both BioCreAtIvE I and BioCreAtIvE II chal-
lenges. CRF had been used in most of top per-
forming systems in the Gene Mention Recognition
task of BioCreAtIvE II (Smith et al., 2008). Some
novel use of linear-chain CRF was proposed. For
example, in (Kuo et al., 2007) labeling was per-
formed in forward and backward directions on the
same sentence and results were combined from
the two directions. Huang et al. (2007) com-
bines a linear-chain CRF and two SVM models
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to enhance the recall. Finkel et al. (2005) used
Gibbs Sampling to add non-local dependencies
into linear-chain CRF model for information ex-
traction. However, the CRF models used in these
systems were all linear-chain CRFs. To the best of
our knowledge, no previous work has been done
on using non-linear-chain CRF in the biomedical
NER task.

Beyond the biomedical domain, skip-chain
CRF has been used in several studies to model
long distance dependency. In (Galley, 2006), skip
edges were linked between sentences with non-
local pragmatic dependencies to rank meetings.
In (Ding et al., 2008), skip-chain CRF was used
to detect the context and answers from online fo-
rums. The most close work to ours was in (Sut-
ton and McCallum, 2004), which used skip-chain
CRF to extract information from email messages
announcing seminars. By linking the same words
whose initial letter is capital, the method obtained
improvements on extracting speakers’ name. Our
work is in the spirit of this idea, but we approach
it in a different way. We found that the problem is
much more difficult in the biomedical NER task:
that is why we systematically studied the princi-
ples of linking skip edges and the quality of con-
nected edges.

3 linear-chain and skip-chain CRF

Conditional Random Field is a probabilistic
graphic model. The model predicts the output
variables y for each input variables in x by calcu-
lating the conditional probability p(y|x) accord-
ing to the graph structure that represents the de-
pendencies between the y variables. Formally,
given a graph structure over y, the CRF model can
be written as:

p(y|x) =
1

Z(x)

∏
Cp∈ζ

∏
Ψc∈Cp

Ψc(xc,yc; θp) (1)

Z(x) is a normalization factor.
In this definition, the graph is partitioned into a

set of cliques ζ = {C1, C2, . . . Cp}, where each
Cp is a clique template. Each Ψc, called a factor,
is corresponding to one edge in the clique c, and
can be parameterized as:

Ψc(xc,yc; θp) = exp
∑
k=1

λpkfpk(xc,yc) (2)

Each feature function fpk(xc,yc) represents one
feature of x and the λpk is the feature weight.

In the training phrase, the parameters is esti-
mated using an optimization algorithm such as
limited memory BFGS etc. In the testing phrase,
CRF finds the most likely label sequence for an
unseen instance by maximizing the probability de-
fined in (1).

In the NER task, one sentence is firstly tok-
enized into a sequences of tokens and each token
can be seen as one word. Each node in the graph is
usually corresponding to one word in a sentence.
Each x variable represents a set of features for one
word, and each y is the variable for the label of
one word. Note that when one edge is linked be-
tween two words, the edge is actually linked be-
tween their corresponding y variables. The y label
is one of {B,I,O}, in which B means the beginning
word of an entity, I means the inside word of an
entity, and O means outside an entity.

If we link each word with its immediate preced-
ing words to form a linear structure for one sen-
tence, we get a linear-chain CRF, defined as:

pθ(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,x) (3)

This structure contains only one clique template.
If we add an extra clique template that contains
some skip edges between nonadjacent words, the
CRF become a skip-chain CRF, formulated as fol-
lows:

pθ(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,x)·∏
(u,v)∈τ

Ψuv(yu, yv,x) (4)

τ is the edge set of the extra clique template con-
taining skip edges. An illustration of linear-chain
and skip-chain CRF is given in Figure 1. It is
straightforward to change a linear-chain CRF to
a skip-chain CRF by simply linking some addi-
tional skip edges. However, it must be careful to
add such edges because different graph structures
require different inference algorithms. Those in-
ference algorithms may have quite different time
complexity. For example, for the linear-chain
CRF, inference can be performed efficiently and
exactly by a dynamic-programming algorithm.
However, for the non-linear structure, approxi-
mate inference algorithms must be used. Solv-
ing arbitrary CRF graph structures is NP-hard. In
other word, we must be careful to link too many
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Figure 1: The illustration of linear-chain CRF and skip-chain CRF. The blue edges represent the linear-
chain edges belonging to one clique template, while the red edges represent the skip edges belonging to
another clique template.

skip edges to avoid making the model impracti-
cal. Therefore, it is absolutely necessary to study
which kinds of edges will contribute to the perfor-
mance while avoiding over-connected edges.

3.1 Features
As our interest is in modifying the CRF graph
structure rather than evaluating the effectiveness
of features, we simply adopted features from the
state-of-the-art such as (McDonald and Pereira,
2005) and (Kuo et al., 2007).

• Common Features: the original word, the
stemmed word, the POS-tag of a word, the
word length, is or not the beginning or end-
ing word of the sentence etc.

• Regular Expression Features: a set of reg-
ular expressions to extract orthographic fea-
tures for the word.

• Dictionary Features: We use several lexi-
cons. For example, a protein name dictionary
compiled from SWISS-PROT, a species dic-
tionary from NCBI Taxonomy, a drug name
dictionary from DrugBank database, and a
disease name dictionary from several Internet
web site.

• N-gram Features: For each token, we ex-
tract the corresponding 2-4 grams into the

feature set.

Each word will include the adjacent words’ fea-
tures within {−2,−1, 0, 1, 2} offsets. The features
used in the linear-chain CRF and skip-chain CRF
are all the same in our experiment.

4 Method

As the limitations discussed above, detecting
the necessary nodes to link should be the first
step in constructing a skip-chain CRF. In the
speaker name extraction task (Sutton and Mc-
Callum, 2004), only identical capitalized words
are linked, because there is few variations in the
speaker’s name. However, gene mentions often
involve words without obvious orthographic fea-
tures and such phenomena are common in the
biomedical literature such as RGC DNA sequence
and multisubunit TFIID protein. If we link all
the words like DNA, sequence and protein, the ef-
ficiency and performance will drop due to over-
connected edges. Therefore, the most important
step of detecting gene mentions is to determine
which edges should be connected.

4.1 Detect keywords in gene mention
We found that many gene mentions have at least
one important word for the identification of gene
mentions. For example, the word, Gal4, is such a
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keyword in Gal4 protein and NS1A in NS1A pro-
tein. These words can distinguish gene mentions
from other common English words and phrases,
and can distinguish different gene mentions as
well. We define such words as the keyword of
a gene mention. The skip edges are limited to
only connect these keywords. We use a rule-based
method to detect keywords. By examining the an-
notated data, we defined keywords as those con-
taining at least one capital letter or digit. And at
the same time, keywords must conform to the fol-
lowing rules:

• Keywords are not stop words, single letters,
numbers, Greek letters, Roman numbers or
nucleotide sequence such as ATTCCCTGG.

• Keywords are not in the form of an upper-
case initial letter followed by lowercase let-
ters, such as Comparison and Watson. These
words have capital letters only because they
are the first word in the sentences, or they are
the names of people or other objects. This
rule will miss some correct candidates, but
reduces noise.

• Keywords do not include some common
words with capital letters such as DNA,
cDNA, RNA, mRNA, tRNA etc. and some fre-
quently appearing non-gene names such as
HIV and mmHg. We defined a lexicon for
such words on the training data.

4.2 Link similar keywords
After keyword candidates are detected, we judge
each pair of keywords in the same sentence to find
similar word pairs. Each word pair is examined by
these rules:

• They are exactly the same words.

• Words only differ in digit letters, such as
CYP1 and CYP2.

• Words with the same prefix, such as IgA and
IgG, or with the same suffix, such as ANF and
pANF.

The token pair will be linked by a skip edge if they
match at least one rule.

4.3 Link typed dependencies
Some long distance dependency cannot be de-
tected simply by string similarity. To capture such

dependency, we used stanford parser3 to parse sen-
tences and extract typed dependencies from parsed
results. The typed dependencies are a set of bi-
nary relations belonging to 55 pre-defined types to
provide a description of the grammatical relation-
ships in a sentence (Marneffe and Manning, 2008).
Some examples of typed dependencies are listed in
Table 1.

Type Description
conj conjuncted by the conjunc-

tion such as and
prep prepositional modifier
nn noun compound modifier
amod adjectival modifier
dep uncertain types

Table 1: Examples for typed dependencies.

The output of the parser is pairs of dependent
words, along with typed dependencies between
two words in a pair. For example, in the sentence:

“. . . and activate transcription of a set
of genes that includes G1 cyclins CLN1,
CLN2, and many DN, synthesis genes.”

a typed dependency nn(G1,CLN1) is extracted by
the parser, meaning the words G1 and CLN1 has a
typed dependency of nn because they form a noun
phrase under a dependency grammar: modifica-
tion. Similarly, in the sentence

“Using the same approach we have
shown that hFIRE binds the stimula-
tory proteins Sp1 and Sp3 in addition to
CBF.”

the words Sp1 and Sp3 can be detected to have a
typed dependency of conj and, and the two words
have a typed denpendency of prep in addition to
with CBF, respectively. The most common type
dependencies are conj and, nn and dep. The key-
words having typed dependencies will be linked
by a skip edge.

5 Experiment

We tested our method on two datasets: the Gene
Mention (GM) data in BioCreAtIvE II (BCIIGM)

3http://nlp.stanford.edu/software/
lex-parser.shtml
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4and GENIA corpus5. The BCIIGM dataset was
used in the BioCreAtIvE II Gene Mention Recog-
nition task in 2006. It was built from the GENE-
TAG corpus (Tanabe et al., 2005) with some mod-
ification of the annotation. The dataset contains
15000 sentences for training and 5000 sentences
for testing. Two gold-standard sets, GENE and
ALTGENE, were provided for evaluation and an
official evaluation procedure in Perl script was
provided. The ALTGENE set provides alternate
forms for genes in the GENE set. In the official
evaluation, each identified string will be looked up
in both GENE and ALTGENE. If the correspond-
ing gene was found in either GENE or ALTGENE,
the identified string will be counted as a correct
answer.

The GENIA corpus is a widely used dataset in
many NER and information extraction tasks due
to its high quality annotation. The GENIA corpus
contains 2000 abstracts from MEDLINE, with ap-
proximately 18500 sentences. The corpus was an-
notated by biomedical experts according to a pre-
defined GENIA ontology. In this work, we only
used the annotated entities that have a category of
protein, DNA, or RNA. These categories are re-
lated to the definition of gene mention in BioCre-
AtIvE II. We only used strict matching evaluation
(no alternate forms check) for the GENIA corpus
as no ALTGENE-like annotation is available.

The performance is measured by precision, re-
call and F score. Each identified string is counted
as a true positive (TP) if it is matched by a gold-
standard gene mention, otherwise the identified
string is a false positive (FP). Each gold standard
gene mention is counted as a false negative (FN) if
it is not identified by the approach. Then the pre-
cision, recall and their harmonic average F score
is calculated as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN

F =
2 · precision · recall
precision+ recall

To implement both linear-chain CRF and skip-

4http://sourceforge.net/projects/
biocreative/files/

5http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/home/wiki.cgi?page=Technical+Term+
Annotation

chain CRF, we used the GRMM Java package6

which is an extended version of MALLET. The
package provides an implement of arbitrary struc-
ture CRF.

5.1 Result Comparison

We evaluated our approach on the BCIIGM
dataset and GENIA corpus. For the BCIIGM
dataset, two evaluation criteria were used: official
- exactly the same as that used in the BioCreAtIvE
II competition, with the official evaluation proce-
dure; and strict - strict matching for each identi-
fied string without checking its alternate forms in
ALTGENE. The GENIA dataset were randomly
divided into 10 parts to perform a 10-fold cross
validation. However, we didn’t do cross validation
on the BCIIGM dataset because the BioCreAtIvE
II competition annotations and evaluation proce-
dure were tailored to evaluating participating sys-
tems.

The comparative results are listed in Table 2.
We compared the two edge linking principles,
linking similar words and linking words having
typed dependencies. The F score from the skip-
chain CRF is better than that from the linear-chain
CRF. Significance tests were performed to check
whether these results have significant differences.
Paired two-tail t-tests were conducted with respect
to the F scores of linear-chain CRF vs. those of the
two skip-chain CRFs, respectively. The p-value
was 1.989×10−7 for the skip-chain CRF linked by
similar words vs. linear-chain CRF. The p-value
was 3.971 × 10−5 for the skip-chain CRF linked
by typed dependencies vs. linear-chain CRF. This
shows that the improvement is significant.

Note that we did not compare our results on the
BCIIGM dataset to those submitted to the compe-
tition. There are two reasons for this: First, our
focus is on comparing the skip-chain CRF with
the linear-chain CRF. Second, in the competition,
most participating systems that used CRF also
applied other algorithms, or sophisticated rules
for adjusting detected boundaries or refining the
recognized results, to achieve competitive perfor-
mance. By contrast, we did not employ any post-
processing rule or algorithm to further improve the
performance. In this sense, comparing our results
to those has become unfair.

6http://mallet.cs.umass.edu/grmm/
index.php
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Data Model Precision(%) Recall(%) F score(%)

BCIIGM official
linear-chain CRF 85.16 81.50 83.29
skip-chain CRF linked by sim-words 86.68 82.75 84.67
skip-chain CRF linked by typed-dep 86.73 82.36 84.49

BCIIGM strict
linear-chain CRF 74.09 69.49 71.73
skip-chain CRF linked by sim-words 76.26 71.53 73.82
skip-chain CRF linked by typed-dep 75.99 70.49 73.14

GENIA
linear-chain CRF 76.77 74.92 75.83
skip-chain CRF linked by sim-words 78.57 77.12 77.82
skip-chain CRF linked by typed-dep 78.18 76.87 77.52

Table 2: The result comparison between the linear-chain CRF and skip-chain CRF. BCIIGM is the
BioCreAtIvE II Gene Mention Recognition dataset. official means using the official provided evalua-
tion procedure and strict means using strict matching to evaluate the results. sim-words means similar
words and typed-dep means typed dependencies. The results for GENIA are averaged over 10-fold cross
validation.

5.2 Discussion
We provided in-depth analysis of our results on the
BCIIGM dataset. As one of our motivations for
connecting words with skip edges is to enhance
the consistency of labeling, we firstly examined
whether the proposed approach can provide con-
sistent labeling. Let us start from two typical ex-
amples. In the first sentence

“The response sequences were localized
between -67 and +30 in the simian cy-
tomegalovirus IE94 promoter and up-
stream of position +9 in the HCMV IE68
promoter.”

the word IE94 is missed (not labeled) while its
similar word IE68 is labeled correctly by the
linear-chain CRF. In the second sentence

“It is suggested that biliary secretion of
both TBZ and FBZ and their metabolites
may contribute to this recycling.”

the word TBZ is labeled as a gene mention in-
correctly (false positive) while its similar word
FBZ is not labeled at all (true negative) by the
linear-chain CRF. Both sentences are correctly la-
beled by the skip-chain CRF. Similar improve-
ments are also made by the skip-chain CRF model
linked by typed dependencies. To study label-
ing consistency, we counted the statistics of in-
consistency errors, as shown in Table 3. Two
kinds of inconsistency errors were counted: false
negatives correctable by consistency (FNCC) and
false positives correctable by consistency (FPCC).

An FNCC means that a gold-standard mention is
missed by the system while its skip edge linked
gene mention is correctly labeled, which is simi-
lar to the inconsistent miss in (Sutton and McCal-
lum, 2004), as the IE94 in the first example. An
FPCC means a non-gene mention is labeled as a
gene while its skip edge linked mention (also non-
gene mention) is not recognized, as TBZ in the sec-
ond example. These two kinds of inconsistency er-
rors lead to inconsistent false negatives (FN) and
false positives (FP). A good model should reduce
as much inconsistency errors as possible. The in-
consistency errors are reduced substantially as we
expected, showing that the reduction of inconsis-
tency errors is one reason for the performance im-
provements.

The skip-chain CRF linked by similar words
had better performance than the skip-chain CRF
linked by typed dependencies. This may infer that
the quality of skip edges has impact on the per-
formance. In order to study this issue, the qual-
ity of skip edges was examined. The statistics of
skip edges in the BCIIGM dataset for the two skip-
chain CRF models (linked by similar words and by
typed dependencies respectively) is shown in the
first two rows of Table 4. A skip edge is counted as
a correct edge if the edge links two words that are
both gene mentions in the gold-standard annota-
tion. The statistics shows that the skip-chain CRF
linked by similar words has a higher precision than
the model by typed dependencies. To make the
comparison more evident, we built another skip-
chain CRF whose skip edges were randomly con-
nected. The number of skip edges in this model

16



Skip edge Model FPCC FNCCtype

sim-words
linear-chain 112 70
skip-chain 48 20

Percentage of reduction 57.14% 71.43%

typed-dep
linear-chain 32 29
skip-chain 9 5

Percentage of reduction 71.88% 82.76%

Table 3: Statistics of inconsistency errors for
the linear-chain CRF and skip-chain CRF. FPCC
is false positives correctable by consistency and
FNCC is false negatives correctable by consis-
tency in the table. The percentage is calculated
by dividing the reduction of errors by the error
number of linear-chain CRF, for example (112 −
48)/48 = 57.14%.

approximately equals to that in the skip-chain CRF
linked by similar words. The percentage of cor-
rect skip-edges in this model is small, as shown
in the last row of Table 4. We tested this skip-
chain CRF model on the BCIIGM dataset under
the strict matching criterion. The performance of
the randomly linked skip-chain CRF is shown in
Table 5. As can be seen from the table, the perfor-
mance of the randomly connected skip-chain CRF
droped remarkably, even worse than that of the
linear-chain CRF. This confirms that the quality
of skip edges is a key factor for the performance
improvement.

Model Edges Correct Percentageedges
sim-words 1912 1344 70.29%
typed-dep 728 425 53.38%
random 1906 41 2.15%

Table 4: Statistics of skip edges and correct
skip edges for the skip-chain CRF models. sim-
words means the skip-chain CRF linked by sim-
ilar words, typed-dep means the CRF linked by
typed dependencies and random means the skip-
chain CRF has randomly connected skip edges.
The edges are counted in the BCIIGM testing data.

From the above discussion, we summarize this
section as follows: (1) the skip-chain CRF with
high quality skip edges can reduce inconsistent la-
beling errors, and (2) the quality of skip edges is
crucial to the performance improvement.

Model P (%) R(%) F(%)
linear 74.09 69.49 71.73

sim-words 76.26 71.53 73.82
typed-dep 75.99 70.49 73.14
random 73.66 69.13 71.32

Table 5: Performance comparison between the
randomly linked skip-chain CRF and other mod-
els. The result was tested on the BCIIGM dataset
under the strict matching criterion. P, R and F
denote the precision, recall and F score respec-
tively. linear denotes the linear-chain CRF. sim-
words denotes the skip-chain CRF linked by sim-
ilar words. typed-dep denotes the skip-chain CRF
linked by typed dependencies. random denotes
the skip-chain CRF having randomly linked skip
edges.

6 Conclusion

This paper proposed a method to construct a skip-
chain CRF to perform named entity recognition in
the biomedical literature. We presented two prin-
ciples to connect skip edges to address the issue
of capturing long distance dependency: linking
similar keywords and linking words having typed
dependencies. We evaluated our method on the
BioCreAtIvE II GM dataset and GENIA corpus.
Significant improvements were observed. More-
over, we presented in-depth analysis on inconsis-
tent labeling errors and the quality of skip edges.
The study shows that the quality of linked edges is
a key factor of the system performance.

The quality of linked edges plays an important
role in not only performance but also time effi-
ciency. Thus, we are planning to apply machine
learning techniques to automatically induce pat-
terns for linking high-quality skip-edges. Further-
more, to refine the recognition results, we are plan-
ning to employ post-processing algorithms or con-
struct refinement rules.
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