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Abstract
Conditional Random Fields are commonly trained
to maximize likelihood. The corresponding Fβ
measure, the weighted harmonic mean of preci-
sion and recall, which is established for evaluation
in information retrieval and text mining, is not
necessarily the optimal result for the user’s choice
of β.

Some approaches have been published to optimize
multivariate measures like Fβ to overcome this
inconsistency. The limitation is that constraints
like the value of β have to be known at training
time.

This publication proposes a method of multi-
objective optimization of both precision and recall
based on a preceding likelihood training. The out-
put is an estimation of pareto-optimal solutions
from which the user can select the best for the
actual application. Evaluated on two publicly
available data sets in the field of named entity
recognition, nearly all Fβ values are superior to
those resulting from log-likelihood training.
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1 Introduction

In information retrieval, the Fβ measure, the weighted
harmonic mean between recall and precision, is estab-
lished as evaluation measure. The corresponding β
value to be chosen is application-depend. Methods for
selecting β at training time exist for Support Vector
Machines [18], Logistic Regression as well as Condi-
tional Random Fields (CRF) [11] all of which are classi-
cally optimized by means of accuracy-related measures
[7, 8, 20]. A similar goal is known from the AmilCare
system [4] with the main focus on user involvement.

At inference time, a parameter to select between
higher precision or recall can be introduced by chang-
ing the decision threshold for an adequate decision
function d(·) ∈ R. In sequential segmentation tasks
like named entity recognition (NER), precision can be
increased with this approach without retraining. In-
creasing recall is possible with the allowance of overlaps

as demonstrated for gene and protein names [3]. This
requires the computation of reliable confidences, which
increasing runtime is a drawback especially during in-
ference [5, 20].

In contrast to optimizing one special value or select-
ing the set of output entities in prediction phase, we
propose to use an evolutionary optimization scheme
to optimize recall and precision in a multi-objective
way to yield different model configurations, which can
be selected by an end-user depending on the respec-
tive task with higher recall or higher precision without
retraining. Thereby, the non-intentional choice of pre-
cision and recall by optimization of accuracy (which
is performed by maximizing the log-likelihood of the
model given the training data in the case of CRFs) is
avoided.

The main contribution of this paper is therefore the
presentation of multi-objective optimization for Con-
ditional Random Fields (MOCRF). The feasibility of
evolutionary optimization in such models is demon-
strated. The resulting possibility to choose a β for
Fβ evaluation is meaningful for information retrieval
tasks often demanding for a high recall or information
extraction with the need for a high precision.

2 Methods

2.1 Conditional Random Fields and
Text Segmentation

Conditional Random Fields (CRF) [11, 13] are a fam-
ily of probabilistic, undirected graphical models for
computing the probability P~λ(~y|~x) of a possible label
sequence ~y = (y0, . . . , yn) given the input sequence
~x = (x0, . . . , xn). In the context of named entity
recognition, this observation sequence ~x corresponds
to the tokenized text. The label sequence is encoded
in a label alphabet L = {I-<entity>,O,B-<entity>}
where yi = O means that xi is outside an entity,
yi = B-<entity> means that xi is the beginning and
yi = I-<entity> means that xi is inside an entity. Us-
ing this IOB alphabet, named entity recognition is
modelled as text segmentation task. An example for
an input sequence and possible output sequences is
shown in Table 1 taken from data of [21].
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~x = ( or chicken beta-actin ( cBA ) gene were injected )T

~y∗ = ( O B I O B O O O O )T

~y′ = ( O B I O O O O O O )T

~y′′ = ( O B I B I I I O O )T

Table 1: Named Entity Recognition example input sequence with possible output sequences. For better perceptibility,
segments have been underlined additionally. The correct sequence is ~y∗, ~y′ and ~y′ are possible predictions. (annotations
from [21])

Correct

C1 ¬C1

Predict
C1 TP FP
¬C1 FN TN

Table 2: Contingency table for two classes C1 and not C1

(¬C1) used to compute different evaluation measures.

Assuming ~y∗ to be the correct segmentation and
~y′′ to be the predicted sequence, the result is 1 TP

(true positive), 1 FN (false negative) and 1 FP (false
positive). Only predicting the first segment and not
the second one leads to a better result with 1 TP and 1
FN (as ~y′ in Table 1). This is a reason why it is easier
to get a high precision than a high recall (compare with
measures in Section 2.2). Given a predicted sequence
and confidence scores, it is therefore easy to increase
precision by removing unconfident entities. But it
can easily be seen that adding entities to a result is
not straight-forward, as searching for candidates is
necessary.

A linear-chain CRF is given by P~λ(~y|~x) =
exp(

∑n
j=1

∑m
i=1 λifi(yj−1, yj , ~x, j))/Z(~x) with Z(~x) =∑

~y∈Y exp
(∑n

j=1

∑m
i=1 λifi

(
yj−1, yj , ~x, j

))
as nor-

malization, where Y is the set of all possible label
sequences. Each feature fi(·) is weighted by λi ∈ R.
These weights are the parameters to be learned in
the model. Optimization of the parameters λi is typ-
ically performed with the limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm (L-BFGS [16]) on
the logarithmic likelihood, the convex function L(T )
with the training data T , including a penalty term:
L(T ) = logP~λ(~y|~x)) −∑m

i=1(λ2
i /2σ

2).

2.2 Evaluation Measures

All measures used in this work are based on the contin-
gency table shown in Table 2 [22]. The entries in the
table denote frequencies of instances being true posi-
tives (TP), false positives (FP), true negatives (TN),
or false negatives (FN). These values are functions of
a model configuration ~λ and some data D 3 (~x, ~y) con-
sisting of text sequences ~x and given label sequences ~y.
Optimizing a CRF with respect to L(T ) corresponds
to maximization of accuracy which is defined as

acc(~λ,D) =
TP + TN

TP + FP + TN + FN
. (1)

Closely related is the precision

prec(~λ,D) =
TP

TP + FP
(2)

which is combined with recall

rec(~λ,D) =
TP

TP + FN
(3)

to form the Fβ measure

Fβ(~λ,D) =
(1 + β2) · prec(~λ,D) · rec(~λ,D)

β2 · prec(~λ,D) + rec(~λ,D)
(4)

The discrepancy between optimizing accuracy and eval-
uating Fβ measures is based on the fact that the first
is not differentiating between false positives and false
negatives nor between true positives and true nega-
tives while the latter does by incorporating recall and
precision.1

2.3 Non-dominated Sorting Genetic
Algorithm II (NSGA-II)

The NSGA-II is an evolutionary optimization scheme
for multi-objective optimization presented here briefly.
For details, we refer to the original work [6].

As usual in evolutionary computation [1], main as-
pects are recombination, mutation and selection of a
population of individuals representing solutions of a
problem. Each has one or more assigned objective val-
ues. For multi-objective optimization the population is
maintained to consist of diverse solutions. The result
of the process is a population of non-dominated indi-
viduals near the real pareto-optimal front. Domination
means that a solution has at least one better and no
worse objective value than another solution.

In each iteration of the optimization procedure, sort-
ing of the individuals is necessary with respect to the
non-domination. The result is a partition of the pop-
ulation into domination fronts, i.e., each individual I
has an assigned rank r(I) ∈ N.

As mentioned, the population needs to be divers and
cover the pareto-front with a good spread. This is
achieved by assigning a crowding distance c(I) ∈ R+ to
each individual. This measure represents the average
distance to the individuals with most similar objective
values in the same front.
1 A state-of-the-art approach to overcome this is the minimum

classification error (MCE) framework [20].
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These two values are used to define the compara-
tor ≺ and sort the individuals of a population:

I1 ≺ I2 if

{
(r(I1) < r(I2))

or (r(I1) = r(I2) and c(I1) > c(I2)) .
(5)

This operator is used to select the individuals to form
the succeeding population; in the original work, a tour-
nament selection [15] is proposed.

The general workflow is as follows: First, the ini-
tial parent and offspring population is generated. In
the evaluation step, the individuals are sorted with
respect to ≺. By selection of the q first individuals, the
succeeding population is created. If the stop criterion
(e.g. based on iteration number or values of objective
functions) is not satisfied, this population is used in the
next iteration to generate offspring by recombination
and mutation and so on. The final set of solutions is
defined by the last population.

2.4 Multi-Objective Optimization of
CRFs (MOCRF)

To apply NSGA-II to optimize precision and recall
we need to define initialization, recombination and
mutation operators manipulating the parameters ~λ =
{λ1, . . . , λm} of a CRF. Each individual in the following
is represented by such a vector, therefore we refer to
them as ~λk (1 ≤ k ≤ q).

For initializing, a maximization of log-likelihood of
an individual ~λ1 via L-BFGS is performed until conver-
gence of the training algorithm. The initial population
P = {~λ1, . . . , ~λq} consists of this individual and n− 1
copies of the resulting parameters. The individuals
~λ2, . . . , ~λq are modified with the mutation operator
mut(~λ): We add a normally distributed random value
to each parameter:

mut(λk) = λk +N (0, σ) , (6)

with N (µ, σ) as a normally distributed random number
with expectation value µ and standard deviation σ ∈ R.

The recombination operator creates offspring from
two parents (chosen by tournament selection). Two
crossover variants are incorporated, in each application
of recombination one is selected randomly: Interme-
diate recombination im(~λ1, ~λ2) or one-point crossover
co(~λ1, ~λ2) [1] (λi,j denotes component j of individual
~λi; r ∈ [1, n] ⊂ N a uniformly distributed random
variable):

im(~λ1, ~λ2) =(
(λ1,1 + λ2,1)/2, . . . , (λ1,n + λ2,n)/2

)T
, (7)

co(~λ1, ~λ2) =
(
λ1,1, . . . , λ1,r, λ2,r+1, . . . , λ2,n

)T
. (8)

The objective functions are prec(~λ,D) and rec(~λ,D).

The implementation used in this work is based on
[14]. It should be noted, that computing the objective
functions can easily be done in parallel to decrease
duration of the optimization process.

3 Experiments

In this section, the results for the proposed optimization
approach are evaluated on two data sets from the field
of named entity recognition. Parameter settings via
cross-validation or bootstrapping are not a topic of this
paper due to page limitations.

The standard deviation σ (step size) used for mu-
tating the individuals representing solutions is set to
σ = 0.01. Greater step sizes would lead to a bet-
ter exploration but a worse approximation of the real
pareto-front. All experiments are performed with a
population size of q = 100 and 100 iterations of the
multi-objective optimization.

3.1 Data Sets

The results and evaluations are shown on the basis of
two data sets with slightly different configurations of
the CRF.

The BioCreative 2 Gene Mention Task data (BC2)
contains entities of the class Gene/Protein with the
specialty of acceptance of several boundaries for entities
[21]. We incorporate the configuration of the CRF
as described in a participating system using only the
shortest possible annotation as exact true positive per
entity [10, 19].

The ConLL data [17] is an annotation of the Reuters
corpus [12] containing the classes person, organization,
locations and misc. We use an order-one CRF with
offset conjunction combining features of one preceding
and succeeding token for each position in the text
sequence. The feature set is fairly standard with Word-
As-Class, prefix and suffix generation of length two,
three and four as well as several regular expressions
detecting capital letters, numbers, dashes and dots
separately and as parts of tokens. The combination
of the provided sets “train” and “testa” is used for
training and “testb” for testing.

In both settings, a feature selection based on infor-
mation gain is performed (namely IG-OAA [9]). For
CoNLL, we use 38095 features and 22993 for BC2.

3.2 Results

Figure 1 depicts the final population for both data sets.
The estimated pareto-fronts for the training and test
sets are shown, each individual forming one position
in the plot on each front is connected with a line. The
boxes show the results of the initial individual trained
to maximize log-likelihood. The blue, green and red
line show the individual with highest F2, F1 and F0.5

measure respectively.
The pareto-front on the training set is the one deter-

mined by MOCRF. The results shown as pareto-front
on the test set are the results of the same individuals
connected by a line. The absence of crossings to a
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Figure 1: Results of the final population for σ = 0.01 without smoothing. Best F1, F0.5 and F2 values are shown in bold
colored lines, selected on the training set with the according values on the test set.

L-BFGS MOCRF

Data Set F0.25 F0.5 F1 F2 F4 F0.25 F0.5 F1 F2 F4

BC2 0.83 0.82 0.80 0.78 0.78 0.88 0.84 0.81 0.82 0.85
CoNLL 0.84 0.83 0.83 0.82 0.82 0.87 0.84 0.83 0.83 0.83

Table 3: Results for classic L-BFGS training in comparison to MOCRF. Given are the best available Fβ measures for
β = {0.25, 0.5, 1, 2, 4}, as well as the result for L-BFGS for different data sets. All results are equal or better than for
L-BFGS training which does not optimize with respect to a special β value. These results are shown graphically in
Figure 2.

large extent shows that the generalization from the
results on the training set to the results on the test set
is feasible.

It is noticeable, that the fronts seem to be differently
well explored in BC2 and CoNLL data. On BC2 data,
precision as well as recall can be increased at the ex-
pense of the other measure: The starting point is an
F1 measure of 0.86 with a precision of 0.88 and a recall
of 0.83 on training data, highest possible precision is
0.93 (difference 0.05), highest possible recall is 0.90
(difference to start: 0.07). On ConLL data, the start-
ing point is an F1 measure of 0.94 with a precision of
0.95 and a recall of 0.94 on training data, highest pos-
sible precision is 0.97 (difference 0.02), highest possible
recall is 0.95 (difference to start: 0.01). This difference
between the data sets is founded by the structure of the
problem and the different dependencies of the objective
functions on the data sets. In both cases, a spread set
of solutions is made available by the proposed method.

Assuming a user asking for a model characterized
by an Fβ measure with fixed β, the provided system

multi-objectively trained exhibits better performance
than the one trained to maximize log-likelihood. This
is shown in Table 3 and Figure 2. On BC2 data, the
results are better for all β values, for CoNLL data the
results are the same for F1, but superior for all other
values.

On both data sets, the precision is higher than the
recall for the model trained on log-likelihood. There-
fore, Fβ is monotonically decreasing for that method.
For MOCRF, higher values of precision than for re-
call are achieved. On BC2 data, this even leads to a
minimum of Fβ for β = 1 as the same precision and
recall are more difficult to achieve than other weight-
ings. On CoNLL data, the exploration of recall is not
as successful as on BC2 data.

4 Conclusions and Future Work

This paper presents the application of multi-objective
optimization via NSGA-II to maximize precision and
recall in Conditional Random Fields for named entity
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Figure 2: Results in Fβ for different β on the result
obtained via L-BFGS training w.r.t. log-likelihood and
MOCRF.

recognition. It is shown on both data sets that Fβ
measures for nearly all β could be increased in com-
parison to classical maximization of log-likelihood via
L-BFGS. This enables an end-user to choose a model
with higher recall or precision without retraining or
time-consuming computation of confidence measures.
Possible applications include information retrieval with
the need for a high recall to find most of the possible
results, e.g. documents from a database as well as in-
formation extraction, where a high precision can help
to detect correct relations between named entities.

Main future work is to evaluate other multi-objective
optimization heuristics to improve the result in terms
of a higher spread of solutions and possibly a better
approximation of the real pareto-front. An integration
of the initial training into the multi-objective optimiza-
tion is also desirable.
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