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Abstract

We introduce the first dataset for sequential
vision-to-language, and explore how this data
may be used for the task of visual storytelling.
The first release of this dataset, SIND1 v.1,
includes 81,743 unique photos in 20,211 se-
quences, aligned to both descriptive (caption)
and story language. We establish several
strong baselines for the storytelling task, and
motivate an automatic metric to benchmark
progress. Modelling concrete description as
well as figurative and social language, as pro-
vided in this dataset and the storytelling task,
has the potential to move artificial intelligence
from basic understandings of typical visual
scenes towards more and more human-like un-
derstanding of grounded event structure and
subjective expression.

1 Introduction

Beyond understanding simple objects and concrete
scenes lies interpreting causal structure; making
sense of visual input to tie disparate moments to-
gether as they give rise to a cohesive narrative of
events through time. This requires moving from rea-
soning about single images – static moments, de-
void of context – to sequences of images that depict
events as they occur and change. On the vision side,
progressing from single images to images in context
allows us to begin to create an artificial intelligence
(AI) that can reason about a visual moment given

∗T.H. and F.F. contributed equally to this work.
1Sequential Images Narrative Dataset. The origi-

nal release was made available through Microsoft. Re-
lated future releases for Visual Storytelling (VIST) are on
visionandlanguage.net/VIST.
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Figure 1: Example language difference between descrip-
tions for images in isolation (DII) vs. stories for images
in sequence (SIS).

what it has already seen. On the language side, pro-
gressing from literal description to narrative helps to
learn more evaluative, conversational, and abstract
language. This is the difference between, for ex-
ample, “sitting next to each other” versus “having
a good time”, or “sun is setting” versus “sky illumi-
nated with a brilliance...” (see Figure 1). The first
descriptions capture image content that is literal and
concrete; the second requires further inference about
what a good time may look like, or what is special
and worth sharing about a particular sunset.

We introduce the first dataset of sequential im-
ages with corresponding descriptions, which cap-
tures some of these subtle but important differ-
ences, and advance the task of visual storytelling.
We release the data in three tiers of language for
the same images: (1) Descriptions of images-
in-isolation (DII); (2) Descriptions of images-in-
sequence (DIS); and (3) Stories for images-in-
sequence (SIS). This tiered approach reveals the ef-
fect of temporal context and the effect of narrative
language. As all the tiers are aligned to the same



images, the dataset facilitates directly modeling the
relationship between literal and more abstract visual
concepts, including the relationship between visual
imagery and typical event patterns. We additionally
propose an automatic evaluation metric which is best
correlated with human judgments, and establish sev-
eral strong baselines for the visual storytelling task.

2 Motivation and Related Work

Work in vision to language has exploded, with re-
searchers examining image captioning (Lin et al.,
2014; Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015; Xu et al., 2015; Chen et al., 2015; Young
et al., 2014; Elliott and Keller, 2013), question an-
swering (Antol et al., 2015; Ren et al., 2015; Gao
et al., 2015; Malinowski and Fritz, 2014), visual
phrases (Sadeghi and Farhadi, 2011), video under-
standing (Ramanathan et al., 2013), and visual con-
cepts (Krishna et al., 2016; Fang et al., 2015).

Such work focuses on direct, literal description of
image content. While this is an encouraging first
step in connecting vision and language, it is far from
the capabilities needed by intelligent agents for nat-
uralistic interactions. There is a significant differ-
ence, yet unexplored, between remarking that a vi-
sual scene shows “sitting in a room” – typical of
most image captioning work – and that the same vi-
sual scene shows “bonding”. The latter description
is grounded in the visual signal, yet it brings to bear
information about social relations and emotions that
can be additionally inferred in context (Figure 1).
Visually-grounded stories facilitate more evaluative
and figurative language than has previously been
seen in vision-to-language research: If a system can
recognize that colleagues look bored, it can remark
and act on this information directly.

Storytelling itself is one of the oldest known hu-
man activities (Wiessner, 2014), providing a way to
educate, preserve culture, instill morals, and share
advice; focusing AI research towards this task there-
fore has the potential to bring about more human-
like intelligence and understanding.

3 Dataset Construction

Extracting Photos We begin by generating a list
of “storyable” event types. We leverage the idea that
“storyable” events tend to involve some form of pos-

beach (684) breaking up (350) easter (259)
amusement park (525) carnival (331) church (243)
building a house (415) visit (321) graduation ceremony (236)
party (411) market (311) office (226)
birthday (399) outdoor activity (267) father’s day (221)

Table 1: The number of albums in our tiered dataset for
the 15 most frequent kinds of stories.
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Figure 2: Dataset crowdsourcing workflow.

session, e.g., “John’s birthday party,” or “Shabnam’s
visit.” Using the Flickr data release (Thomee et al.,
2015), we aggregate 5-grams of photo titles and de-
scriptions, using Stanford CoreNLP (Manning et al.,
2014) to extract possessive dependency patterns. We
keep the heads of possessive phrases if they can be
classified as an EVENT in WordNet3.0, relying on
manual winnowing to target our collection efforts.2

These terms are then used to collect albums using
the Flickr API.3 We only include albums with 10 to
50 photos where all album photos are taken within a
48-hour span and CC-licensed. See Table 1 for the
query terms with the most albums returned.

The photos returned from this stage are then pre-
sented to crowd workers using Amazon’s Mechani-
cal Turk to collect the corresponding stories and de-
scriptions. The crowdsourcing workflow of devel-
oping the complete dataset is shown in Figure 2.

Crowdsourcing Stories In Sequence We develop
a 2-stage crowdsourcing workflow to collect natu-
ralistic stories with text aligned to images. The first
stage is storytelling, where the crowd worker selects
a subset of photos from a given album to form a
photo sequence and writes a story about it (see Fig-
ure 3). The second stage is re-telling, in which the
worker writes a story based on one photo sequence
generated by workers in the first stage.

In both stages, all album photos are displayed in
the order of the time that the photos were taken,
with a “storyboard” underneath. In storytelling, by
clicking a photo in the album, a “story card” of the
photo appears on the storyboard. The worker is in-

2We simultaneously supplemented this data-driven effort by
a small hand-constructed gazetteer.

3https://www.flickr.com/services/api/



Figure 3: Interface for the Storytelling task, which con-
tains: 1) the photo album, and 2) the storyboard.
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Figure 4: Example descriptions of images in isolation
(DII); descriptions of images in sequence (DIS); and sto-
ries of images in sequence (SIS).

structed to pick at least five photos, arrange the or-
der of selected photos, and then write a sentence or
a phrase on each card to form a story; this appears as
a full story underneath the text aligned to each im-
age. Additionally, this interface captures the align-
ments between text and photos. Workers may skip
an album if it does not seem storyable (e.g., a col-
lection of coins). Albums skipped by two workers
are discarded. The interface of re-telling is simi-
lar, but it displays the two photo sequences already
created in the first stage, which the worker chooses
from to write the story. For each album, 2 work-
ers perform storytelling (at $0.3/HIT), and 3 work-
ers perform re-telling (at $0.25/HIT), yielding a total
of 1,907 workers. All HITs use quality controls to
ensure varied text at least 15 words long.

Crowdsourcing Descriptions of Images In Iso-
lation & Images In Sequence We also use
crowdsourcing to collect descriptions of images-
in-isolation (DII) and descriptions of images-in-
sequence (DIS), for the photo sequences with sto-
ries from a majority of workers in the first task (as
Figure 2). In both DII and DIS tasks, workers are

Data 

Set 

#(Txt, Img) 

Pairs (k) 

Vocab 

Size (k) 

Avg. 

#Tok 
%Abs Frazier Yngve Ppl 

Brown 52.1 47.7 20.8 15.2% 18.5 77.2 194.0 

DII 151.8 13.8 11.0 21.3% 10.3 27.4 147.0 

DIS 151.8 5.0 9.8 24.8% 9.2 23.7 146.8 

SIS 252.9 18.2 10.2 22.1% 10.5 27.5 116.0 

5 

Table 2: A summary of our dataset, following the pro-
posed analyses of Ferraro et al. (2015), including the Fra-
zier and Yngve measures of syntactic complexity. The
balanced Brown corpus (Marcus et al., 1999), provided
for comparison, contains only text. Perplexity (Ppl) is
calculated against a 5-gram language model learned on a
generic 30B English words dataset scraped from the web.

man sitting  black chatting amount trunk went [female] see 

woman white    large gentleman goers facing got today saw 

standing two front enjoys sofa bench [male] decided came 

holding young group folks egg enjoying took really started 

wearing image shoreline female great time 

Desc.-in-Iso. Desc.-in-Seq. Story-in-Seq. 

man 

woman 

standing 

holding 

wearing 

Table 3: Top words ranked by normalized PMI.

asked to follow the instructions for image caption-
ing proposed in MS COCO (Lin et al., 2014) such
as describe all the important parts. In DII, we use
the MS COCO image captioning interface.4 In DIS,
we use the storyboard and story cards of our story-
telling interface to display a photo sequence, with
MS COCO instructions adapted for sequences. We
recruit 3 workers for DII (at $0.05/HIT) and 3 work-
ers for DIS (at $0.07/HIT).

Data Post-processing We tokenize all sto-
rylets and descriptions with the CoreNLP tok-
enizer, and replace all people names with generic
MALE/FEMALE tokens,5 and all identified named
entities with their entity type (e.g., location).
The data is released as training, validation, and test
following an 80%/10%/10% split on the stories-in-
sequence albums. Example language from each tier
is shown in Figure 4.

4 Data Analysis

Our dataset includes 10,117 Flickr albums with
210,819 unique photos. Each album on average has
20.8 photos (σ = 9.0). The average time span of each
album is 7.9 hours (σ = 11.4). Further details of each
tier of the dataset are shown in Table 2.6

4https://github.com/tylin/coco-ui
5We use those names occurring at least 10,000 times.

https://ssa.gov/oact/babynames/names.zip
6We exclude words seen only once.



We use normalized pointwise mutual information
to identify the words most closely associated with
each tier (Table 3). Top words for descriptions-
in-isolation reflect an impoverished disambiguat-
ing context: References to people often lack so-
cial specificity, as people are referred to as simply
“man” or “woman”. Single images often do not
convey much information about underlying events
or actions, which leads to the abundant use of pos-
ture verbs (“standing”, “sitting”, etc.). As we turn to
descriptions-in-sequence, these relatively uninfor-
mative words are much less represented. Finally, top
story-in-sequence words include more storytelling
elements, such as names ([male]), temporal refer-
ences (today) and words that are more dynamic and
abstract (went, decided).

5 Automatic Evaluation Metric

Given the nature of the complex storytelling task,
the best and most reliable evaluation for assessing
the quality of generated stories is human judgment.
However, automatic evaluation metrics are useful to
quickly benchmark progress. To better understand
which metric could serve as a proxy for human eval-
uation, we compute pairwise correlation coefficients
between automatic metrics and human judgments on
3,000 stories sampled from the SIS training set.

For the human judgements, we again use crowd-
sourcing on MTurk, asking five judges per story to
rate how strongly they agreed with the statement “If
these were my photos, I would like using a story like
this to share my experience with my friends”.7 We
take the average of the five judgments as the final
score for the story. For the automatic metrics, we use
METEOR,8 smoothed-BLEU (Lin and Och, 2004),
and Skip-Thoughts (Kiros et al., 2015) to compute
similarity between each story for a given sequence.
Skip-thoughts provide a Sentence2Vec embedding
which models the semantic space of novels.

As Table 4 shows, METEOR correlates best with
human judgment according to all the correlation co-
efficients. This signals that a metric such as ME-
TEOR which incorporates paraphrasing correlates
best with human judgement on this task. A more

7Scale presented ranged from “Strongly disagree” to
“Strongly agree”, which we convert to a scale of 1 to 5.

8We use METEOR version 1.5 with hter weights.

METEOR BLEU Skip-Thoughts
r 0.22 (2.8e-28) 0.08 (1.0e-06) 0.18 (5.0e-27)
ρ 0.20 (3.0e-31) 0.08 (8.9e-06) 0.16 (6.4e-22)
τ 0.14 (1.0e-33) 0.06 (8.7e-08) 0.11 (7.7e-24)

Table 4: Correlations of automatic scores against human
judgements, with p-values in parentheses.

Beam=10 Greedy -Dups +Grounded
23.55 19.10 19.21 –

Table 6: Captions generated per-image with METEOR
scores.

detailed study of automatic evaluation of stories is
an area of interest for a future work.

6 Baseline Experiments

We report baseline experiments on the storytelling
task in Table 7, training on the SIS tier and testing
on half the SIS validation set (valtest). Example out-
put from each system is presented in Table 5. To
highlight some differences between story and cap-
tion generation, we also train on the DII tier in iso-
lation, and produce captions per-image, rather than
in sequence. These results are shown in Table 7.

To train the story generation model, we use a
sequence-to-sequence recurrent neural net (RNN)
approach, which naturally extends the single-image
captioning technique of Devlin et al. (2015) and
Vinyals et al. (2014) to multiple images. Here, we
encode an image sequence by running an RNN over
the fc7 vectors of each image, in reverse order. This
is used as the initial hidden state to the story decoder
model, which learns to produce the story one word
at a time using softmax loss over the training data
vocabulary. We use Gated Recurrent Units (GRUs)
(Cho et al., 2014) for both the image encoder and
story decoder.

In the baseline system, we generate the story us-
ing a simple beam search (size=10), which has been
successful in image captioning previously (Devlin et
al., 2015). However, for story generation, the re-
sults of this model subjectively appear to be very
poor – the system produces generic, repetitive, high-
level descriptions (e.g., “This is a picture of a dog”).

Beam=10 Greedy -Dups +Grounded
23.13 27.76 30.11 31.42
Table 7: Stories baselines with METEOR scores.



+Viterbi This is a picture of a family. This is a picture of a cake. This is a picture of a dog. This is a
picture of a beach. This is a picture of a beach.

+Greedy The family gathered together for a meal. The food was delicious. The dog was excited to be
there. The dog was enjoying the water. The dog was happy to be in the water.

-Dups The family gathered together for a meal. The food was delicious. The dog was excited to be
there. The kids were playing in the water. The boat was a little too much to drink.

+Grounded The family got together for a cookout. They had a lot of delicious food. The dog was happy to
be there. They had a great time on the beach. They even had a swim in the water.

Table 5: Example stories generated by baselines.

This is a predictable result given the label bias prob-
lem inherent in maximum likelihood training; recent
work has looked at ways to address this issue di-
rectly (Li et al., 2016).

To establish a stronger baseline, we explore sev-
eral decode-time heuristics to improve the quality of
the generated story. The first heuristic is to lower
the decoder beam size substantially. We find that
using a beam size of 1 (greedy search) significantly
increases the story quality, resulting in a 4.6 gain in
METEOR score. However, the same effect is not
seen for caption generation, with the greedy caption
model obtaining worse quality than the beam search
model. This highlights a key difference in generat-
ing stories versus generating captions.

Although the stories produced using a greedy
search result in significant gains, they include many
repeated words and phrases, e.g., “The kids had a
great time. And the kids had a great time.” We intro-
duce a very simple heuristic to avoid this, where the
same content word cannot be produced more than
once within a given story. This improves METEOR
by another 2.3 points.

An advantage of comparing captioning to story-
telling side-by-side is that the captioning output may
be used to help inform the storytelling output. To
this end, we include an additional baseline where
“visually grounded” words may only be produced
if they are licensed by the caption model. We define
the set of visually grounded words to be those which
occurred at higher frequency in the caption training
than the story training:

P (w|Tcaption)
P (w|Tstory)

> 1.0 (1)

We train a separate model using the caption an-
notations, and produce an n-best list of captions for
each image in the valtest set. Words seen in at
least 10 sentences in the 100-best list are marked
as ‘licensed’ by the caption model. Greedy decod-
ing without duplication proceeds with the additional
constraint that if a word is visually grounded, it can
only be generated by the story model if it is licensed
by the caption model for the same photo set. This
results in a further 1.3 METEOR improvement.

It is interesting to note what a strong effect rel-
atively simple heuristics have on the generated sto-
ries. We do not intend to suggest that these heuris-
tics are the right way to approach story generation.
Instead, the main purpose is to provide clear base-
lines that demonstrate that story generation has fun-
damentally different challenges from caption gener-
ation; and the space is wide open to explore for train-
ing and decoding methods to generate fluent stories.

7 Conclusion and Future Work

We have introduced the first dataset for sequen-
tial vision-to-language, which incrementally moves
from images-in-isolation to stories-in-sequence. We
argue that modelling the more figurative and so-
cial language captured in this dataset is essential for
evolving AI towards more human-like understand-
ing. We have established several strong baselines
for the task of visual storytelling, and have moti-
vated METEOR as an automatic metric to evaluate
progress on this task moving forward.
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