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Abstract

We propose a high-performance cascaded hy-
brid model for Chinese NER. Firstly, we use
Boosting, a standard and theoretically well-
founded machine learning method to combine a
set of weak classifiers together into a base sys-
tem. Secondly, we introduce various types of
heuristic human knowledge into Markov Logic
Networks (MLNs), an effective combination
of first-order logic and probabilistic graphi-
cal models to validate Boosting NER hypothe-
ses. Experimental results show that the cas-
caded hybrid model significantly outperforms
the state-of-the-art Boosting model.

1 Introduction
Named entity recognition (NER) involves the identifica-
tion and classification of certain proper nouns in text,
such as person names (PERs), locations (LOCs), orga-
nizations (ORGs), miscellaneous names (MISCs), tem-
poral, numerical and monetary phrases. It is a well-
established task in the NLP community and is regarded
as crucial technology for many NLP applications, such as
information extraction, question answering, information
retrieval and machine translation.

Compared to European-language NER, Chinese NER
seems to be more difficult (Yu et al., 2006). Recent ap-
proaches to Chinese NER are a shift away from man-
ually constructed rules or finite state patterns towards
machine learning or statistical methods. However, rule-
based NER systems lack robustness and portability, and
machine learning approaches might be unsatisfactory to
learn linguistic information in Chinese NEs. In fact,
Chinese NEs have distinct linguistic characteristics in
their composition and human beings usually use prior
knowledge to recognize NEs. For example, about 365
of the highest frequently used surnames cover 99% Chi-
nese surnames (Sun et al., 1995). For the LOC “�¬
�/Beijing City”, “�¬/Beijing” is the name part and

“�/City” is the salient word. For the ORG “�¬�?
�/Beijing City Government”, “�¬/Beijing” is the LOC
name part, “�/City” is the LOC salient word and “?
�/Government” is the ORG salient word. Some ORGs
contain one or more PERs, LOCs, MISCs and ORGs. A
more complex example is the nested ORG “V��fI
�fI'f¡�:fb/School of Computer Science,
Wuhan University, Wuhan City, Hubei Province” which
contains two ORGs “fI'f/Wuhan University” and
“¡�:fb/School of Computer Science” and two
LOCs “V��/Hubei Province” and “fI�/Wuhan
City”. The two ORGs contain ORG salient words “'
f/University” and “fb/School”, while the two LOCs
contain LOC salient words “�/Province” and “�/City”
respectively.

Inspired by the above observation, we propose a cas-
caded hybrid model for Chinese NER 1. First, we em-
ploy Boosting, which has theoretical justification and has
been shown to perform well on other NLP problems,
to combine weak classifiers into a strong classifier. We
then exploit a variety of heuristic human knowledge into
MLNs, a powerful combination of logic and probabil-
ity, to validate Boosting NER hypotheses. We also use
three Markov chain Monte Carlo (MCMC) algorithms
for probabilistic inference in MLNs. Experimental re-
sults show that the cascaded hybrid model yields better
NER results than the stand-alone Boosting model by a
large margin.

2 Boosting
The main idea behind the Boosting algorithm is that a set
of many simple and moderately accurate weak classifiers
(also called weak hypotheses) can be effectively com-
bined to yield a single strong classifier (also called the
final hypothesis). The algorithm works by training weak
classifiers sequentially whose classification accuracy is
slightly better than random guessing and finally combin-

1In this paper we only focus on PERs, LOCs, ORGs and
MISCs. Since temporal, numerical and monetary phrases can
be well identified with rule-based approaches.
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ing them into a highly accurate classifier. Each weak clas-
sifier searches for the hypothesis in the hypotheses space
that can best classify the current set of training examples.
Based on the evaluation of each iteration, the algorithm
re-weights the training examples, forcing the newly gen-
erated weak classifier to give higher weights to the exam-
ples that are misclassified in the previous iteration.

We use the AdaBoost.MH algorithm (Schapire and
Singer, 1999) as shown in Figure 1, an n-ary classi-
fication variant of the original well-known binary Ad-
aBoost algorithm (Freund and Schapire, 1997). It has
been demonstrated that Boosting can be used to build
language-independent NER models that perform excep-
tionally well (Wu et al. (2002), Wu et al. (2004), Carreras
et al. (2002)). In particular, reasonable Chinese NER
results were still obtained using Boosting, even though
there was no Chinese-specific tuning and the model was
only trained on one-third of the provided corpora in
SIGHAN bakeoff-3 (Yu et al., 2006).

3 Markov Logic Networks
A Markov Network (also known as Markov Random
Field) is a model for the joint distribution of a set of
variables (Pearl, 1988). It is composed of an undirected
graph and a set of potential functions. A First-Order
Knowledge Base (KB) (Genesereth and Nislsson, 1987)
is a set of sentences or formulas in first-order logic. A
Markov Logic Network (MLN) (Richardson and Domin-
gos, 2006) is a KB with a weight attached to each formula
(or clause). Together with a set of constants representing
objects in the domain, it species a ground Markov Net-
work containing one feature for each possible grounding
of a first-order formula in the KB, with the correspond-
ing weight. The weights associated with the formulas in
an MLN jointly determine the probabilities of those for-
mulas (and vice versa) via a log-linear model. An MLN
defines a probability distribution over Herbrand interpre-
tations (possible worlds), and can be thought of as a tem-
plate for constructing Markov Networks. The probabil-
ity distribution over possible worlds x specified by the
ground Markov Network ML,C is given by

P (X = x) =
1
Z

exp(
∑

wini(x )) =
1
Z

∏
φi

(
x{i}

)ni(x)

(1)
where Fi is the formula in first-order logic, wi is a real

number, ni (x) is the number of true groundings of Fi in
x, x{i} is the true value of the atoms appearing in Fi, and
φi

(
x{i}

)
= ewi .

3.1 Learning Weights
Given a relational database, MLN weights can in princi-
ple be learned generatively by maximizing the likelihood
of this database. The gradient of the log-likelihood with

Input: A training set Tr = {< d1, C1 >, . . . , < dg, Cg >}
where Cj ⊆ C = {c1, ..., cm} for all j = 1, . . . , g.
Output: A final hypothesis Φ(d, c) =

∑S

s=1
αsΦs(d, c).

Algorithm: LetD1(dj , ci) = 1
mg

for all j = 1, . . . , g and
for all i = 1, . . . , m. For s = 1, . . . , S do:

• pass distribution Ds(dj , ci)to the weak classifier;

• derive the weak hypothesis Φs from the weak
classifier;

• choose αs ∈ R;

• set Ds+1(dj , ci) =
Ds(dj ,ci)exp(−αsCj [ci]Φs(dj ,ci))

Zs

where
Zs =∑m

i=1

∑g

j=1
Ds(dj , ci )exp(− αsCj [ci] Φs(dj , ci))

is a normalization factor chosen so that∑m

i=1

∑g

j=1
D

s+1
(dj , ci) = 1.

Figure 1: The AdaBoost.MH algorithm.

respect to the weights is

∂

∂wi
logPw(X = x) = ni (x)−

∑
Pw(X = x′)ni(x

′)

(2)
where the sum is over all possible databases x′ , and

Pw(X = x′) is P (X = x′) computed using the current
weight vector w = (w1, ..., wi, ...). Unfortunately, com-
puting these expectations can be very expensive. Instead,
we can maximize the pseudo-likelihood of the data more
efficiently. If x is a possible database and xl is the lth
ground atom’s truth value, the pseudo-log-likelihood of x
given weights w is

logP ∗
w(X = x) =

n∑
l=1

logPw(Xl=xl
| MBx(Xl )) (3)

where MBx (Xl) is the state of Xl’s Markov blan-
ket in the data. Computing Equation 3 and its gradient
does not require inference over the model, and is there-
fore much faster. We optimize the pseudo-log-likelihood
using the limited-memory BFGS algorithm (Liu and No-
cedal, 1989).

3.2 Inference
If F1 and F2 are two formulas in first-order logic, C is a
finite set of constants including any constants that appear
in F1 or F2, and L is an MLN, then

P (F1 | F2, L, C) = P (F1 | F2,ML,C) (4)

=
P (F1 ∧ F2 | ML,C)

P (F2 | ML,C)
(5)

=

∑
x∈χF1∩χF2

P (X = x | ML,C)∑
x∈χF2

P (X = x | ML,C)
(6)
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where χFi is the set of worlds where Fi holds, and
P (x | ML,C) is given by Equation 1. The ques-
tion of whether a knowledge base entails a formula F
in first-order logic is the question of whether P (F |
LKB, CKB,F ) = 1, where LKB is the MLN obtained by
assigning infinite weight to all the formulas in KB, and
CKB,F is the set of all constants appearing in KB or F .

The most widely used approximate solution to proba-
bilistic inference in MLNs is Markov chain Monte Carlo
(MCMC) (Gilks et al., 1996). In this framework, the
Gibbs sampling algorithm is to generate an instance from
the distribution of each variable in turn, conditional on the
current values of the other variables. One way to speed
up Gibbs sampling is by Simulated Tempering (Marinari
and Parisi, 1992), which performs simulation in a gener-
alized ensemble, and can rapidly achieve an equilibrium
state. Poon and Domingos (2006) proposed MC-SAT,
an inference algorithm that combines ideas from MCMC
and satisfiability.

4 Heuristic Human Knowledge
Even though the Boosting model is able to accommodate
a large number of features, some NEs, especially LOCs,
ORGs and MISCs are difficult to identify due to lack
of linguistic knowledge. For example, some ORGs are
possibly mistagged as LOCs and/or MISCs. We incor-
porate heuristic human knowledge via MLNs to validate
the Boosting NER hypotheses. We extract 151 location
salient words and 783 organization salient words from the
LDC Chinese-English bi-directional NE lists compiled
from Xinhua News database. We also make a punctua-
tion list which contains 19 items. We make the following
assumptions to validate the Boosting results:

• Obviously, if a tagged entity ends with a location
salient word, it is a LOC. If a tagged entity ends with
an organization salient word, it is an ORG.

• If a tagged entity is close to a subsequent location
salient word, probably they should be combined to-
gether as a LOC. The closer they are, the more likely
that they should be combined.

• Heuristically, if a series of consecutive tagged en-
tities are close to a subsequent organization salient
word, they should probably be combined together
as an ORG because an ORG may contain multiple
PERs, LOCs, MISCs and ORGs.

• Similarly, if there exists a series of consecutive
tagged entities and the last one is tagged as an ORG,
it is likely that all of them should be combined as an
ORG.

• Entity length restriction: all kinds of tagged entities
cannot exceed 25 Chinese characters.

• Punctuation restriction: in general, all tagged enti-
ties cannot span any punctuation.

• Since all NEs are proper nouns, the tagged entities
should end with noun words.

All the above human knowledge can be formulized as
first-order logic to construct the structure of MLNs. And
all the validated Boosting results are accepted as new NE
candidates (or common nouns). We train an MLN to rec-
ognize them.

5 Experiments
We randomly selected 15,000 and 3,000 sentences from
the People’s Daily corpus as training and test sets, respec-
tively. We used the decision stump2 as the weak classifier
in Boosting to construct a character-based Chinese NER
baseline system.

The features used were as follows:

• The current character and its POS tag.

• The characters within a window of 3 characters be-
fore and after the current character.

• The POS tags within a window of 3 characters be-
fore and after the current character.

• A small set of conjunctions of POS tags and charac-
ters within a window of 3 characters of the current
character.

• The BIO 3 chunk tags of the previous 3 characters.

We declared 10 predicates and specified 9 first-
order formulas according to the heuristic human
knowledge in Section 4. For example, we used
person(candidate) to predicate whether a candi-
date is a PER. Formulas are recursively constructed from
atomic formulas using logical connectives and quanti-
fiers. They are constructed using four types of sym-
bols: constants, variables, functions, and predicates.
Constant symbols represent objects in the domain of
interest (e.g., “�¬/Beijing” and “
w/Shanghai” are
LOCs). Variable symbols range over the objects in the
domain. Function symbols represent mappings from tu-
ples of objects to objects. Predicate symbols repre-
sent relations among objects in the domain or attributes
of objects. For example, the formula endwith(r,
p)ˆlocsalientword(p)=>location(r) means
if r ends with a location salient word p, then it is a LOC.

2A decision stump is basically a one-level decision tree
where the split at the root level is based on a specific at-
tribute/value pair.

3In this representation, each character is tagged as either the
beginning of a named entity (B tag), a character inside a named
entity (I tag), or a character outside a named entity (O tag).
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We extracted all the distinct NEs (4,475 PERs, 2,170
LOCs, 2,823 ORGs and 614 MISCs) from the 15,000-
sentence training corpus. An MLN training database,
which consists of 10 predicates and 44,810 ground
atoms was built. A ground atom is an atomic formula
all of whose arguments are ground terms (terms con-
taining no variables). For example, the ground atom
location(�¬�) conveys that “�¬�/Beijing
City” is a LOC.

During MLN learning, each formula is converted to
Conjunctive Normal Form (CNF), and a weight is learned
for each of its clauses. The weight of a clause is used
as the mean of a Gaussian prior for the learned weight.
These weights reflect how often the clauses are actually
observed in the training data.

We validated 352 Boosting results to construct the
MLN testing database, which contains 1,285 entries and
these entries are used as evidence for inference. Infer-
ence is performed by grounding the minimal subset of the
network required for answering the query predicates. We
applied 3 MCMC algorithms: Gibbs sampling (GS), MC-
SAT and Simulated Tempering (ST) for inference and
the comparative NER results are shown in Table 1. The
cascaded hybrid model greatly outperforms the Boosting
model. We obtained the same results using GS and ST
algorithms. And GS (or ST) yields slightly better results
than the MC-SAT algorithm.

6 Conclusion
In this paper we propose a cascaded hybrid model
for Chinese NER. We incorporate human heuristics via
MLNs, which produce a set of weighted first-order
clauses to validate Boosting NER hypotheses. To the best
of our knowledge, this is the first attempt at using MLNs
for the NER problem in the NLP community. Experi-
ments on People’s Daily corpus illustrate the promise of
our approach. Directions for future work include learning
the structure of MLNs automatically and using MLNs for
information extraction and statistical relational learning
(e.g., entity relation identification).
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