
SYNCHRONETICS :
MUC-3 TEST RESULTS AND ANALYSI S

James Mayfiel d
Computer Science Dept .

University of Maryland, Baltimore Count y
Baltimore, MD 21228-539 8
mayfield©umbc3 .umbc.edu

(301) 455-3099

Edwin Addison
Synchronetics, Inc .

3700 Koppers St., Suite 13 1
Baltimore MD 2122 7

76366 .1115©compuserve . com
(301) 644-240 0

RESULTS

The Synchronetics entry in the MUC-3 competition is a full-parser, semantic net-based system written i n
C. Our system attempts to fill the first four slots of each template and, in some cases, the three perpetrato r
slots and the human-target-ids slot . The Synchronetics system achieved the following official scores on the
tst2 corpus :

SLOT

	

REC PRE OVG FAL

----------------------------------- -

template-id 31 51 49

incident-date 17 55 0

incident-type 19 61 0 0

category 24 56 28 1 1

indiv-perps 0 * *

org-perps 0 * *

perp-confidence 0 * * 0

phys-target-ids 0 * *

phys-target-num 0 * *

phys-target-types 0 * * 0

human-target-ids 2 100 0

human-target-num 0 * *

human-target-types 0 * * 0

target-nationality 0 * * 0

instrument-types 0 * * 0

incident-location 0 * *

phys-effects 0 * * 0

human-effects 0 * * 0

----------------------------------- -

MATCHED ONLY 18 55 25

MATCHED/MISSING 7 55 25

ALL TEMPLATES 7 35 53

SET FILLS ONLY 7 58 14

	

0

These official results were achieved despite a system bug that caused almost half of the roughly 1400 sentences

108



in the corpus to be thrown away without being processed at all . The bug arose because a buffer that was
supposed to be 200 items long was inadvertantly changed to be 20 items long . With this bug fixed, we
achieved the following unofficial scores :

SLOT

	

REC PRE OVG FAL

----------------------------------- -

template-id 48 49 5 1

incident-date 22 47 0

incident-type 34 69 0 0

category 36 54 27 18

indiv-perps 0 * *

org-perps 0 * *

perp-confidence 0 * * 0

phys-target-ids 0 * *

phys-target-num 0 * *

phys-target-types 0 * * 0

human-target-ids 2 62 0

human-target-num 0 * *

human-target-types 0 * * 0

target-nationality 0 * * 0

instrument-types 0 * * 0

incident-location 0 * *

phys-effects 0 * * 0

human-effects 0 * * 0

----------------------------------- -

MATCHED ONLY 20 54 26

MATCHED/MISSING 10 54 26

ALL TEMPLATES 10 33 55
SET FILLS ONLY 11 62 13

	

0

We do not at present have any settings that can be modified to alter the recall/precision tradeoff .

ALLOCATION OF TIME

The most time-consuming of our activities were the development of the semantic net software, and th e

development of the phrase and sentence interpreters . Next came the development of the grammars for the
two parsers, and the template generation software . Development of the dictionary was quite rapid, thank s
to our automatic acquisition software . The activity we spent the least amount of time on was the encodin g
of world knowledge into the knowledge base .

LIMITING FACTORS

Our primary limiting factor was the tenuous nature of the lines of communication between our team members .
With personnel spread across six different sites, we were forced to rely on weekly meetings to resolve problems
that would ordinarily be cleared up on a daily basis if everyone were working at the same site .

109



The second limiting factor for our system was the amount of time we had available to us . Most of the
system was developed from scratch (only the NL-Builder software was written prior to the commencemen t
of our project) . We had only a few weeks between the time we were first able to process 100 texts and th e
time that the final test was due . Thus, we were unable to be as careful as we would have liked to be in th e
development of the final system configuration .

The third limiting factor for our system was the lack of a detailed and well thought out world model .
We did most of our development using a very small world model that had fewer than 50 concepts . Jus t
before running the final test, we quickly developed and switched to a world model containing almost 90 0
concepts . However, we did not have time to examine it closely before running the test . We believe that we
could considerably increase our system's performance for the slots we are currently filling by improving th e
world model .

SUCCESSES AND FAILURES

Our biggest successes were the development of the dictionary, and the speed of the parsers. Our automati c
acquisition software allowed us to obtain a dictionary of 10000 words quite painlessly . Together, both parsers
took less than one hour to process every word of all 100 texts, running on a DecStation 3100 .

Our biggest failures were lack of development of the knowledge base and the speed of the semantic net I/ O
routines . Our knowledge base was a last-minute effort, which significantly degraded system performance . The
semantic net I/O routines were slow enough to be the main time drain on the three non-parser components .
For these reasons the knowledge base and the semantic net I/O routines are our prime candidates to b e
rewritten .

REUSABILITY

We expect to be able to reuse all system components except for the template generator in other projects .
We are currently working on a project to automatically convert linear text to hypertext . We plan to use ou r
MUC system as the front end to the conversion system . This will require only the development of software
to generate hypertext links based on the semantic net built by the MUC system, and the development of a
new knowledge base for the target domain .

LESSONS LEARNED

Participation in MUC-3 has led us to the following conclusions :

• Our software engineering paradigm (which is thrust upon us by virtue of the fact that our personne l
are spread out across several sites) is a poor one, but it is not fatal .

• Several person-years of work is needed to build a parser-based system that has the poieniial to do well
at the MUC task . Even then, a weakness in any component can easily reduce the system's abilities t o
those of a stupid keyword-matching system .

110



• Evaluation of natural language processing systems through a MUC-like competition is significantl y
complicated by the fact that it is hard to know what is being measured . Nonetheless, we believe
that our architecture will be excellent for evaluation of the various components of a natural languag e
processing system, because we will be able to mix and match the components that go into our system .
We will have this flexibility because each of our components is a stand-alone program, and because al l
of our programs communicate with each other via the same semantic net representation language . For
example, if we develop both a script-processing component and an anaphora component, we will be abl e
to put them together in either order, or omit either or both of them . By comparing the results of eac h
of these configurations, we will gain insight into the relative merits of these two forms of processing .

111




