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Abstract

For many applications of question answer-
ing (QA), being able to explain why a
given model chose an answer is critical.
However, the lack of labeled data for an-
swer justifications makes learning this dif-
ficult and expensive. Here we propose an
approach that uses answer ranking as dis-
tant supervision for learning how to select
informative justifications, where justifica-
tions serve as inferential connections be-
tween the question and the correct answer
while often containing little lexical over-
lap with either. We propose a neural net-
work architecture for QA that reranks an-
swer justifications as an intermediate (and
human-interpretable) step in answer selec-
tion. Our approach is informed by a set of
features designed to combine both learned
representations and explicit features to
capture the connection between questions,
answers, and answer justifications. We
show that with this end-to-end approach
we are able to significantly improve upon
a strong IR baseline in both justification
ranking (+9% rated highly relevant) and
answer selection (+6% P@1).

1 Introduction

Developing interpretable machine learning (ML)
models, that is, models where a human user can
understand what the model is learning, is consid-
ered by many to be crucial for ensuring usabil-
ity and accelerating progress (Craven and Shav-
lik, 1996; Kim et al., 2015; Letham et al., 2015;
Ribeiro et al., 2016). For many applications of
question answering (QA), i.e., finding short an-
swers to natural language questions, simply pro-
viding an answer is not sufficient. A complete

Question:
Which of these is a response to an internal stimulus?
(A) A sunflower turns to face the rising sun.
(B) A cucumber tendril wraps around a wire.
(C) A pine tree knocked sideways in a landslide grows up-

ward in a bend.
(D) Guard cells of a tomato plant leaf close when there

is little water in the roots .

Justification: Plants rely on hormones to send signals
within the plant in order to respond to internal stimuli
such as a lack of water or nutrients.

Table 1: Example of an 8th grade science question with a
justification for the correct answer. Note the lack of direct
lexical overlap present between the justification and the cor-
rect answer, demonstrating the difficulty of the task of finding
justifications using traditional distant supervision methods.

approach must be interpretable, i.e., able to ex-
plain why an answer is correct. For example,
in the medical domain, a QA approach that an-
swers treatment questions would not be trusted if
the treatment recommendation is not explained in
terms that can be understood by the human user.

One approach to interpreting complex models
is to make use of human-interpretable information
generated by the model to gain insight into what
the model is learning. We follow the intuition of
Lei et al. (2016), whose two-component network
first generates text spans from an input document,
and then uses these text spans to make predictions.
Lei et al. utilize these intermediate text spans to
infer the model’s preferences. By learning these
human-readable intermediate representations end-
to-end with a downstream task, the representations
are optimized to correlate with what the model
learns is discriminatory for the task, and they can
be evaluated against what a human would consider
to be important. Here we apply this general frame-
work for model interpretability to QA.

In this work, we focus on answering multiple-
choice science exam questions (Clark (2015); see
example in Table 1). This domain is challenging
as: (a) approximately 70% of science exam ques-
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tion shave been shown to require complex forms of
inference to solve (Clark et al., 2013; Jansen et al.,
2016), and (b) there are few structured knowledge
bases to support this inference. Within this do-
main, we propose an approach that learns to both
select and explain answers, when the only super-
vision available is for which answer is correct (but
not how to explain it). Intuitively, our approach
chooses the justifications that provide the most
help towards ranking the correct answers higher
than incorrect ones. More formally, our neural net-
work approach alternates between using the cur-
rent model with max-pooling to choose the high-
est scoring justifications for correct answers, and
optimizing the answer ranking model given these
justifications. Crucially, these reranked texts serve
as our human-readable answer justifications, and
by examining them, we gain insight into what the
model learned was useful for the QA task.

The specific contributions of this work are:

1. We propose an end-to-end neural method for
learning to answer questions and select a
high-quality justification for those answers.
Our approach re-ranks free-text answer jus-
tifications without the need for structured
knowledge bases. With supervision only for
the correct answers, we learn this re-ranking
through a form of distant supervision – i.e.,
the answer ranking supervises the justifica-
tion re-ranking.

2. We investigate two distinct categories of fea-
tures in this “little data” domain: explicit fea-
tures, and learned representations. We show
that, with limited training, explicit features
perform far better despite their simplicity.

3. We demonstrate a large (+9%) improvement
in generating high-quality justifications over
a strong information retrieval (IR) baseline,
while maintaining near state-of-the-art per-
formance on the multiple-choice science-
exam QA task, demonstrating the success of
the end-to-end strategy.

2 Related work

In many ways, deep learning has become the
canonical example of the ”black box” of machine
learning and many of the approaches to explaining
it can be loosely categorized into two types: ap-
proaches that try to interpret the parameters them-
selves (e.g., with visualizations and heat maps

(Zeiler and Fergus, 2014; Hermann et al., 2015; Li
et al., 2016), and approaches that generate human-
interpretable information that is ideally correlated
with what is being learned inside the model (e.g.,
Lei et al. (2016)). Our approach falls into the lat-
ter type – we use our model’s reranking of human-
readable justifications to give us insight into what
the model considers informative for answering
questions. This allows us to see where we do well
(Section 6.2), and where we can improve (Section
6.3).

Deep learning has been successfully applied
to many recent QA approaches and related tasks
(Bordes et al., 2015; Hermann et al., 2015; He
and Golub, 2016; Dong et al., 2015; Tan et al.,
2016, inter alia). However, large quantities of
data are needed to train the millions of parame-
ters often contained in these models. Recently,
simpler model architectures have been proposed
that greatly reduce the number of parameters while
maintaining high performance (e.g., Iyyer et al.,
2015; Chen et al., 2016; Parikh et al., 2016). We
take inspiration from this trend and propose a sim-
ple neural architecture for our task to offset the
limited available training data.

Another way to mitigate sparse training data
is to include higher-level explicit features. Like
Sachan et al. (2016), we make use of explicit fea-
tures alongside features from distributed represen-
tations to capture connections between questions,
answers, and supporting text. However, we use a
simpler set of features and while they use struc-
tured and semi-structured knowledge bases, we
use only free-text.

Our approach to learning justification reranking
end-to-end with answer selection is similar to the
Jansen et al. (2017) latent reranking perceptron,
which also operates over free text. However, our
approach does not require decomposing the text
into an intermediate representation, allowing our
technique to more easily extend to larger textual
knowledge bases.

The way we have formulated our justification
selection (as a re-ranking of knowledge base sen-
tences) is related to, but distinct from the task of
answer sentence selection (Wang and Manning,
2010; Severyn and Moschitti, 2012, 2013; Sev-
eryn et al., 2013; Severyn and Moschitti, 2015;
Wang and Nyberg, 2015, inter alia). Answer sen-
tence selection is typically framed as a fully or
semi-supervised task for factoid questions, where
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Figure 1: Architecture of our question answering approach.
Given a question, candidate answer, and a free-text knowl-
edge base as inputs, we generate a pool of candidate justifica-
tions, from which we extract feature vectors. We use a neural
network to score each and then use max-pooling to select the
current best justification. This serves as the score for the can-
didate answer itself. The red border indicates the components
that are trained online.

a correctly selected sentence fully contains the an-
swer text. Here, we have a variety of questions,
many of which are non-factoid. Additionally, we
have no direct supervision for our justification se-
lection (i.e., no labels as to which sentences are
good justifications for our answers), motivating
our distant supervision approach where the per-
formance on our QA task serves as supervision
for selecting good justifications. Further, we are
not actually looking for sentences that contain
the answer choice, as with answer sentence selec-
tion, but rather sentences which close the ”lexical
chasm” (Berger et al., 2000) between question and
answer. This distinction is demonstrated in the ex-
ample in Table 1, where the correct answer does
not overlap lexically with the question and only
minimally with the justification. Instead, the jus-
tification serves as a bridge between the question
and answer, filling in the missing information for
the required inference.

3 Approach

One of the primary difficulties with the explain-
able QA task addressed here is that, while we have
supervision for the correct answer, we do not have
annotated answer justifications. Here we tackle
this challenge by using the QA task performance
as supervision for the justification reranking, al-
lowing us to learn to choose both the correct an-
swer and a compelling, human-readable justifica-
tion for that answer.

Additionally, similar to the strategy Chen and
Manning (2014) applied to parsing, we combine
representation-based features with explicit fea-
tures that capture additional information that is
difficult to model through embeddings, especially
with limited training data.

The architecture of our approach is summarized
in Figure 1. Given a question and a candidate an-
swer, we first query an textual knowledge base
(KB) to retrieve a pool of potential justifications
for that answer candidate. For each justification,
we extract a set of features designed to model the
relations between questions, answers, and answer
justifications based on word embeddings, lexical
overlap with the question and answer candidate,
discourse, and information retrieval (IR) (Section
4.2). These features are passed into a simple neu-
ral network to generate a score for each justifica-
tion, given the current state of the model. A final
max-pooling layer selects the top-scoring justifi-
cation for the candidate answer and this max score
is used also as the score for the answer candidate.
The system is trained using correct-incorrect an-
swer pairs with a pairwise margin ranking loss ob-
jective function to enforce that the correct answer
be ranked higher than any of the incorrect answers.

With this end-to-end approach, the model learns
to select justifications that allow it to correctly an-
swer questions. We hypothesize that this approach
enables the model to indirectly learn to choose
justifications that provide good explanations as to
why the answer is correct. We empirically test this
hypothesis in Section 6, where we show that in-
deed the model learns to correctly answer ques-
tions, as well as to select high-quality justifications
for those answers.

4 Model and Features

Our approach consists of three main components:
(a) the retrieval of a pool of candidate answer jus-
tifications (Section 4.1); (b) the extraction of fea-
tures for each (Section 4.2); and (c) the scoring
of the answer candidate itself based on this pool
of justifications (Section 4.3). The architecture of
this latter scoring component is shown in Figure 2.

4.1 Candidate Justification Retrieval

The first step in our process is to use standard in-
formation retrieval (IR) methods to retrieve a set of
candidate justifications for each candidate answer
to a given question. To do this, we build a bag-of-
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Figure 2: Detailed architecture of the model’s scoring com-
ponent. The question, candidate answer, and justification are
encoded (by summing their word embeddings) to create vec-
tor representations of each. These representations are com-
bined in several ways to create a set of representation-based
similarity features that are concatenated to additional explicit
features capturing lexical overlap, discourse and IR informa-
tion and fed into a feed-forward neural network. The output
layer of the network is a single node that represents the score
of the justification candidate.

words (BOW) query using the content lemmas for
the question and answer candidate, boosting the
answer lemmas to have four times more weight1.
We used Lucene2 with a tf-idf based scoring func-
tion to return the top-scoring documents from the
KB. Each of these indexed documents consists of
a single sentence from our corpora, and serves as
one potential justification.

4.2 Feature Extraction

For each retrieved candidate justification, we ex-
tract a set of features based on (a) distributed rep-
resentations of the question, candidate answer, and
justification terms; (b) strict lexical overlap; (c)
discourse relations present in the justification; and
(d) the IR scores for the justification.

Representation-based features (Emb): To
model the similarity between the text of each ques-
tion (Q), candidate answer (A), and candidate jus-
tification (J), we include a set of features that uti-
lize distributed representations of the words found
in each. First we encode each by summing the
vectors for each of their words.3. We then com-
pute sim(Q, A), sim(Q, J), and sim(A, J) us-

1We empirically found this answer term boosting to en-
sure retrieval of documents which were relevant to the partic-
ular answer candidate.

2https://lucene.apache.org
3While this BOW approach is not ideal in many ways, it

performed equivalently to far more complicated approaches
such as LSTMs and GRUs, also noted by (Iyyer et al., 2015),
likely due to the limited training data in this domain.

ing cosine similarity. Using another vector repre-
sentation of only the unique words in the justifica-
tion, i.e., the words that do not occur in either the
question or the candidate answer, we also compute
sim(Q, uniqueJ) and sim(A, uniqueJ).

To create a feature which captures the relation-
ship between the question, answer, and justifica-
tion, we take inspiration from TransE, a popu-
lar relation extraction framework (Bordes et al.,
2013). TransE is based on the premise that if two
entities, e1 and e2 are related by a relation r, then
a mapping into k dimensions, m(x) ∈ Rk can
be learned such that m(e1) + m(r) ≈ m(e2).
Here, we modify this intuition for QA by sug-
gesting that given the vectorized representations
of the question, answer candidate, and justifica-
tion above, Q + J ≈ A, i.e., a question combined
with a strong justification will point towards an an-
swer. Here we model this as an explicit feature,
the euclidean distance between Q + J and A, and
hypothesize that as a consequence the model will
learn to select passages that maximize the quality
of the justifications. This makes a total of six fea-
tures based on distributed representations.

Lexical overlap features (LO): We additionally
characterize each justification in terms of a simple
set of explicit features designed to capture the size
of the justification, as well as the lexical overlap
(and difference) between the justification and the
question and answer candidate. We include these
five features: the proportion of question words, of
answer words, and of the combined set of question
and answer words that also appear in the justifica-
tion; the proportion of justification words that do
not appear in either the question or the answer; and
the length of the justification in words.4

Semi-Lexicalized Discourse features (lexDisc):
These features use the discourse structure of the
justification text, which has been shown to be use-
ful for QA (Jansen et al., 2014; Sharp et al., 2015;
Sachan et al., 2016).

We use the discourse parser of Surdeanu et al.
(2015) to fragment the text into elementary dis-
course units (EDUs) and then recursively con-
nect neighboring EDUs with binary discourse re-
lations. For each of the 18 possible relation la-
bels, we create a set of semi-lexicalized discourse
features that indicate the presence of a given dis-
course relation as well as whether or not the head

4We normalized this value by the maximum justification
length.
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and modifier texts contain words from the question
and/or the answer.

For example, for the question Q: What makes
water a good solvent...? A: strong polarity, with
a discourse-parsed justification [Water is an effi-
cient solvent]e1 [because of this polarity.]e2, we
create the semi-lexicalized feature Q cause A, be-
cause there is a Cause relation between EDUs e1
and e2, e1 overlaps with the question, and e2 over-
laps with the answer. Since there are 18 possible
discourse relation labels, and the prefix and suffix
can be any of Q, A, QA or None, this creates a set
of 288 indicator features.

IR-based features (IR++): Finally, we also use
a set of four IR-based features which are assigned
at the level of the answer candidate (i.e., these fea-
tures are identical for each of the candidate justi-
fications for that answer choice). Using the same
query method as described in Section 4.1, for each
question and answer candidate we retrieve a set
of indexed documents. Using the tf-idf based re-
trieval scores of these returned documents, s(di)
for di ∈ D, we rank the answer candidates using
two methods:

• by the maximum retrieved document score
for each candidate, and

• by the weighted sum of all retrieved docu-
ment scores5: ∑

di∈D

1

i
s(di) (1)

We repeat this process using an unboosted query
as well, for a total of four rankings of the answer
candidates. We then use these rankings to make
a set of four reciprocal rank features, IR++

0 , ...,
IR++

3 , for each answer candidate (i.e., IR++
0 = 1.0

for the top-ranked candidate in the first ranking,
IR++

0 = 0.5 for the next candidate, etc.)

4.3 Neural Network
As shown in Figure 2, the extracted features for
each candidate justification are concatenated and
passed into a fully-connected feed-forward neural
network (NN). The output layer is a single node
representing the justification score. We then use
max-pooling over these scores to select the current
best justification for the answer candidate, and use
its score as the score for the answer candidate it-
self. For training, the correct answer for a given

5Weighted sum was based on the IR scores used in the
winning Kaggle system from user Cardal ( https://github.
com/Cardal/Kaggle_AllenAIscience)

question is paired with each of the incorrect an-
swers, and each are scored as above. We compute
the pair-wise margin ranking loss for each training
pair:

L = max(0, m− F (a+) + F (a−)) (2)

where F (a+) and F (a−) are the model scores for
a correct and incorrect answer candidate and m is
the margin, and backpropagate the gradients. At
testing time, we use the trained model to score
each answer choice (again using the maximum
justification score) and select the highest-scoring.

As we are interested in not only correctly an-
swering questions, but also selecting valid justi-
fication for those answers, we keep track of the
scores of all justifications and use this information
to return the top k justifications for each answer
choice. These are evaluated along with the answer
selection performance in Section 6.

5 Experiments

5.1 Data and Setup
We evaluated our model on the set of 8th grade
science questions that was provided by the Allen
Institute for Artificial Intelligence (AI2) for a re-
cent Kaggle challenge. The training set contained
2,500 question, each with 4 answer candidates.
For our test set, we used the 800 publicly-released
questions that were used as the validation set in the
actual evaluation.6 We tuned our model architec-
tures and hyper-parameters on the training data us-
ing five-fold cross-validation (training on 4 folds,
validating on 1). During testing, we froze the
model architecture and all hyperparameters and
re-trained on all the training data, setting aside
a random 15% of training questions to facilitate
early stopping.

5.2 Baselines
In addition to previous work, we compare our
model against two strong IR baselines:

• IR Baseline: For this baseline, we rank an-
swer candidates by the maximum tf.idf doc-
ument retrieval score using an unboosted
query of question and answer terms (see Sec-
tion 4.1 for retrieval details).

• IR++: This baseline uses the same architec-
ture as the full model, as described in Section
4.3, but with only the IR++ feature group.

6The official testing dataset is not publicly available.
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5.3 Corpora

For our pool of candidate justifications (as well
as the scores for our IR baselines) we used the
corpora that were cited as being most helpful to
the top-performing systems of the Kaggle chal-
lenge. These consisted of short, flash-card style
texts gathered from two online resources: about
700K sentences from StudyStack7 and 25K sen-
tences from Quizlet8. From these corpora, we use
the top 50 sentences retrieved by the IR model
as our set of candidate justifications. All of our
corpora were annotated using using the Stanford
CoreNLP toolkit (Manning et al., 2014), the de-
pendency parser of Chen and Manning (2014), and
the discourse parser of Surdeanu et al. (2015).

While our model is able to learn a set of em-
beddings, we found performance was improved
when using pre-trained embeddings, and in this
low-data domain, fixing these embeddings to not
update during training substantially reduced the
amount of model over-fitting. In order to pre-
train domain-relevant embeddings for our vocabu-
lary, we used the documents from the StudyStack
and Quizlet corpora, supplemented by the newly
released Aristo MINI corpus (December 2016 re-
lease)9, which contains 1.2M science-related sen-
tences from various web sources. The training was
done using the word2vec algorithm (Mikolov
et al., 2010, 2013) as implemented by Levy and
Goldberg (2014), such that the context for each
word in a sentence is composed of all the other
words in the same sentence. We used embeddings
of size 50 as we did not see a performance im-
provement with higher dimensionality.

5.4 Model Tuning

The neural model was implemented in Keras
(Chollet, 2015) using the Theano (Theano De-
velopment Team, 2016) backend. For our feed-
forward component, we use a shallow neural net-
work that we lightly tuned to have a single fully-
connected layer containing 10 nodes, glorot uni-
form initialization, a tanh activation, and an L2-
regularization of 0.1. We trained with the RM-
SProp optimizer (Tieleman and Hinton, 2012), a
learning rate of 0.001, 100 epochs, a batch size of
32, and early stopping with a patience of 5 epochs.
Our loss function used a margin of 1.0.

7
https://www.studystack.com/

8
https://quizlet.com/

9
http://allenai.org/

# Model P@1 Val P@1 Test
1 Random 25 25
2 IR Baseline 47.2 47
3 IR++ 50.7∗∗ 36.35
4 Iyyer et al. (2015) – 32.52
5 Khot et al. (2017) – 46.17
6 Our approach w/o IR 50.54∗ 48.66

7 Our approach 54.0∗∗†† 53.3∗∗†

Table 2: Performance on the AI2 Kaggle questions, measured
by precision-at-one (P@1). ∗s indicate that the difference be-
tween the corresponding model and the IR baseline is sta-
tistically significant (∗ indicates p < 0.05 and ∗∗ indicates
p < 0.001) and †s indicate significance compared to IR++,
All significance values were determined through a one-tailed
bootstrap resampling test with 100,000 iterations.

Ablated Model P@1 Val
IR++ + LO 53.4∗∗††

IR++ + LO + lexDisc 53.6∗∗††

Full Model (IR++ + LO + lexDisc + Emb) 54.0∗∗††

Table 3: Ablation of feature groups results, measured by
precision-at-one (P@1) on validation data. Significance is
indicated as in Table 2.

We experimented with burn-in, i.e., using the
best justification chosen by the IR model for the
first mini-batches, but found that models without
burn-in performed better, indicating that the model
benefited from being able to select its own justifi-
cation.

6 Results

Rather than seeking to outperform all other sys-
tems at selecting the correct answer to a question,
here we aimed to construct a system system that
can produce substantially better justifications for
why the answer choice is correct to a human user,
without unduly sacrificing accuracy on the answer
selection task. Accordingly, we evaluate our sys-
tem both in terms of it’s ability to correctly answer
questions (Section 6.1), as well as provide high-
quality justifications for those answers (6.2). Ad-
ditionally, we perform an error analysis (Section
6.3), taking advantage of the insight the reranked
justifications provide into what the model is learn-
ing.

6.1 QA Performance
We evaluated the accuracy of our system as well
as the baselines on the held-out 800 set of test
questions. Performance, measured in precision at
1 (P@1)(Manning et al., 2008), is shown in Ta-
ble 2 for both the validation (i.e., cross validation
on training) and test partitions. Because NNs are
sensitive to initialization, each experimental result
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shown is the average performance across five runs,
each using different random seeds.

The best performing baseline on the validation
data was a model using only IR++ features (line
3), but its performance dropped substantially when
evaluated on test due to the failure of several ran-
dom seed initializations to learn. For this reason,
we assessed significance of our model combina-
tions with respect to both the IR baseline as well
as the IR++ (indicated by ∗ and †s, respectively).

Our full model that combines IR++, lexical
overlap, discourse, and embeddings-based fea-
tures, has a P@1 of 53.3% (line 7), an absolute
gain of 6.3% over the strong IR baseline despite
using the same background knowledge.

Comparison to Previous Work: We compared
our performance against another model that
achieves state of the art performance on a differ-
ent set of 8th grade science questions, TUPLE-
INF(T+T’) (Khot et al., 2017). TUPLEINF(T+T’)
uses Integer Linear Programming to find support
for questions via tuple representations of KB sen-
tences10. On our test data, TUPLEINF(T+T’)
achieves 46.17% P@1 (line 5). As this model is
independent of an IR component, we compare its
performance against our full system without the
IR-based features (line 6), whose performance is
48.66% P@1, an absolute improvement of 2.49%
P@1 (5.4% relative) despite our unstructured text
inputs and the far smaller size of our knowledge
base (three orders of magnitude).

Sachan et al. (2016) also tackle the AI2 Kag-
gle question set with an approach that learns align-
ments between questions and structured and semi-
structured KB data. They use only the training
questions (splitting them into training, validation,
and testing partitions), supplemented by questions
found in online study guides, and report an accu-
racy of 47.84%. By way of a loose comparison
(since we are evaluating on different data parti-
tions), our model has approximately 5% higher
performance despite our simpler set of features
and unstructured KB.

We also compare our model to our implementa-
tion of the basic Deep-Averaged Network (DAN)
Architecture of Iyyer et al. (2015). We used the
same 50-dimensional embeddings in both models,
so with the reduced embedding dimension, we re-

10Notably, one portion of the tuple KB used was con-
structed based on a different 8th grade question set than the
one we use here.

duced the size of each of the DAN dense layer to
50 as well. For simplicity, we also did not im-
plement their word-dropout, a feature that they re-
ported as providing a performance boost. Using
this implementation, the performance on the test
set was 31.50% P@1. To help with observed over-
fitting, we tried removing the dense layers and re-
ceived a small boost to 32.52% P@1 (line 4). The
lower performance of their model, which relies
exclusively on latent representations of the data,
underscores the benefit of including explicit fea-
tures alongside latent features in a deep-learning
approach for this domain11.

In comparison to other systems that competed
in the Kaggle challenge, our system comes in
in 7th place out of 170 competitors (top 4%).12

Compared with the systems which disclosed their
methods, we use a subset of their corpora and sub-
stantially less hyperparameter tuning, and yet we
achieve competitive results.
Feature Ablation: To evaluate the contribution
of the individual feature groups, we additionally
performed an ablation experiment (see Table 3).
Each of our ablated models performed signifi-
cantly better than the IR baseline on the validation
set, including our simplest model, IR+++LO.

6.2 Justification Performance

One of our key claims is that our approach ad-
dresses the related, but more challenging prob-
lem of performing explainable question answer-
ing, i.e., providing a high-quality, compelling jus-
tification for the chosen answer. To evaluate this
claim, we evaluated a random set of 100 test ques-
tions that both the IR baseline and our full sys-
tem answered correctly. For each question, we as-
sessed the quality of each of the top five justifica-
tions. For IR, these were the highest-scoring re-
trieved documents, and for our system, these were

11Another difference between our system and that of the
DAN baseline is our usage of a text justification. However,
we suspect this difference is not the source of the perfor-
mance difference: see Jansen et al. (2017), where a variant
of the DAN baseline that included an averaged representa-
tion of a justification alongside the averaged representations
of the question and answer failed to show a performance in-
crease.

12Based on the public leaderboard (https://www.kaggle.
com/c/the-allen-ai-science-challenge/leaderboard).
The best scoring submission had an accuracy of 59.38%.
Note that for the systems that participated, this set served as
validation while for us it was test, and thus it is likely that
these scores are slightly overfitted to this dataset, but for us it
was blind. As such this is a conservative comparison, and in
reality the difference is likely to be smaller.
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Question
Q: Scientists use ice cores to help predict the impact of
future atmospheric changes on climate. Which property
of ice cores do these scientists use?
A: The composition of ancient materials trapped in air
bubbles

Rating Example Justification
Good Ice cores: cylinders of ice that scientist use to

study trapped atmospheric gases and particles
frozen with in the ice in air bubbles

Half Ice core: sample from the accumulation of snow
and ice over many years that have recrystallized
and have trapped air bubbles from previous time
periods

Topical Vesicular texture formation [has] trapped air
bubbles.

Off-
topic

Physical change: change during which some
properties of material change but ...

Table 4: Example justifications from the our model and their
associated ratings.

Model Good@1 Good@5 NDCG@5
IR Baseline 0.52 0.64 0.55
Our Approach 0.61 0.74 0.62∗∗

Table 5: Percentage of questions that have at least one
good justification within the top 1 (Good@1) and the top
5 (Good@5) justifications, as well as the normalized dis-
counted cumulative gain at 5 (NDCG@5) of the ranked justi-
fications. Significance indicated as in Table 2.

the top-scoring justifications as re-ranked by our
model. Each of these justifications was composed
of a single sentence from our corpus, though a fu-
ture version could use multi-sentence passages, or
aggregate several sentences together, as in Jansen
et al. (2017).

Following the methodology of Jansen et al.
(2017), each justification received a rating of ei-
ther Good (if the connection between the question
and correct answer was fully covered), Half (if
there was a missing link), Topical (if the justifi-
cation was simply of the right topic), or Off-Topic
(if the justification was completely unrelated to the
question). Examples of each rating are provided in
Table 4.

Results of this analysis are shown using three
evaluation metrics in Table 5. The first two
columns show the percentage of questions which
had a Good justification at position 1 (Good@1),
and within the top 5 (Good@5). Note that 61% of
the top-ranked justifications from our system were
rated as Good as compared to 52% from the IR
baseline (a gain of 9%), despite the systems using
identical corpora.

We also evaluated the justification ratings us-
ing normalized discounted cumulative gain at 5
(NDCG@5) (as formulated in Manning et al.

Figure 3: Number of questions for which our complete model
chooses a new justification at each epoch during training.
While this is for a single random seed, we see essentially
identical graphs for each random initialization.

(2008), p.163), where we assigned Good justifi-
cations a gain of 3.0, Half a gain of 2.0, Topical a
gain of 1.0, and Off-Topic a gain of 0.0. With this
formulation, our system had a NDCG@5 of 0.62
while the IR baseline had a significantly lower
NDCG@5 of 0.55 (p < 0.001), shown in the third
column of Table 5.

Contribution of Learning to Rerank Justifica-
tions: The main assertion of this work is that
through learning to rank answers and justifications
for those answer candidates in an end-to-end man-
ner, we both answer questions correctly and pro-
vide compelling justifications as to why the an-
swer is correct. To confirm that this is the case, we
also ran a version of our system that does not re-
rank justifications, but uses the top-ranked justifi-
cation retrieved by IR. This configuration dropped
our performance on test to 48.7% P@1, a decrease
of 4.6%, and we additionally lose all justification
improvements from our system (see Section 6.2),
demonstrating that learning this reranking is key
to our approach.

Additionally, we tracked the number of times
a new justification was chosen by the model as it
trained. We found that our system converges to a
stable set of justifications during training, shown
in Figure 3.

6.3 Error Analysis

To better understand the limitations of our current
system, we performed an error analysis of 30 in-
correctly answered questions. We examined the
top 5 justifications returned for both the correct
and chosen answers. Notably, 50% of the ques-
tions analyzed had one or more good justifications
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Error Type Percent
Short justification/High lexical overlap 53.3%
Complex inference required 43.3%
Knowledge Base Noise 6.7%
Word order necessary 6.7%
Coverage 6.7%
Negation 3.3%
Other 6.7%

Table 6: Summary of the findings of the 30 question error
analysis. Note that a given question may fall into more than
one category.

Type: Short justification/High lexical overlap
Question: The length of time between night and day on

Earth varies throughout the year. This time vari-
ance is explained primarily by .

Correct: Earth ’s angle of tilt
... the days are very short in the winter because
the sun’s rays hit the earth at an extreme angle
... due to the tilt of the earth’s axis.

Chosen: Earth ’s distance from the Sun
Is light year time or distance? Distance

Table 7: Example of the system preferring a justification for
which all the terms were found in either the question or an-
swer candidate. (Justifications shown in italics)

in the top 5 returned by our system, but for a vari-
ety of reasons, summarized in Table 6, the system
incorrectly ranked another justification higher.

The table shows that the most common form of
error was the system’s preference for short justifi-
cations with a large degree of lexical overlap with
the question and answer choice itself, shown by
the example in Table 7. The effect was magnified
when the correct answer required more explana-
tion to connect the question to the answer. This
suggests that the system has learned that generally
many unmatched words are indicative of an incor-
rect answer. While this may typically be true, ex-
tending the system to be able to prefer the opposite
with certain types of questions would potentially
help with these errors.

Type: Complex inference required
Question: Mr. Harris mows his lawn twice each month.

He claims that it is better to leave the clippings
on the ground. Which long term effect will this
most likely have on his lawn?

Correct: It will provide the lawn with needed nutrients.

Table 8: Example of a question for which complex inference
is required. In order to answer the question, you would need
to assemble the event chain: cut grass left on the ground
→ grass decomposes → decomposed material provides nu-
trients.

The second largest source of errors came from
questions requiring complex inference (causal,
process, quantitative, or model-based reasoning)
as with the question shown in Table 8. This
demonstrates not only the difficulty of the ques-

Type: Knowledge base noise
Question: If an object traveling to the right is acted upon

by an unbalanced force from behind it the object
will .

Correct: speed up
Chosen change direction

Unbalanced force: force that acts on an object
that will change its direction

Table 9: Example of a question for which knowledge base
noise (here, in the form of over-generalization) was an issue.

tion set but also the need for systems that can ro-
bustly handle a variety of question types and their
corresponding information needs.

Aside from these primary sources of error, there
were some smaller trends: 7% of the incorrectly
chosen answers actually had justifications which
“validated” them due to noise in the knowledge
base (e.g., the example shown in Table 9), 7% re-
quired word-order to answer (e.g., mass divided
by acceleration vs. acceleration divided by mass),
another 7% of questions suffered from lack of cov-
erage of the question concept in the knowledge
base, and 3% failed to appropriately handle nega-
tion (i.e., questions of the format Which of the fol-
lowing are NOT ...).

7 Conclusion

Here we propose an end-to-end question answer-
ing (QA) model that learns to correctly answer
questions as well as provide compelling, human-
readable justifications for its answers, despite not
having access to labels for justification quality. We
do this by using the question answering task as a
form of distant supervision for learning justifica-
tion re-ranking. We show that our accuracy and
justification quality are significantly better than a
strong IR baseline, while maintaining near state-
of-the-art performance for the answer selection
task as well.
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Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
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