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ABSTRACT 
The processing of Japanese text is complicated by the fact that 
there are no word delimiters. To segment Japanese text, 
systems typically use knowledge-based methods and large 
lexicons. This paper presents a novel approach to Japanese 
word segmentation which avoids the need for Japanese word 
lexicons and explicit rule bases. The algorithm utilizes a 
hidden Markov model, a stochastic process, to determine word 
boundaries. This method has achieved 91% accuracy in 
segmenting words in a test corpus. 

1. INTRODUCTION 
The segmentation of Japanese words is one of the main 
challenges in the automatic processing of Japanese text. 
Unlike English text which has spaces that separate 
consecutive words, there are no such word boundary indicators 
in sentences of Japanese (kanji and kana) text. 

The algorithms used to obtain robust segmentation of 
Japanese text generally utilize two techniques, lexicon and 
rule-based approaches. Large lexicons are inevitably used in 
conjunction with or as a part of the text segmenting 
algorithms that have been developed. These lexicons are often 
time consuming to build and are thus not an optimal solution. 
Knowledge based approaches typically entail a significant 
amount of human effort in specifying the rules that will be used 
to determine word segmentation and do not provide sufficient 
coverage of the language's grammar rules. 

This paper introduces a hidden Markov model (HMM) which 
has been developed for Japanese word segmentation. Hidden 
Markov models are part of the larger class of probabilistic 
algorithms. These approaches use large sets of data to abstract 
away the structure of the domain being learned, as 
probabilities. We will see that with sufficient data such a 
stochastic process can achieve 91% accuracy in word 
segmentation which approaches the state-of-the-art in 
s6gmentation techniques. 

2. JAPANESE WORD SEGMENTATION 
TECHNIQUES 

Current Japanese word segmentation techniques consistently 
rely on large lexicons of words in their decision making 
procedure. A typical word processor will have both a 
knowledge base which encodes rules of Japanese grammar, as 
well as a lexicon of over 50,000 words [Mori, et. al. 1990]. 

Hypothesized segments of incoming text are analyzed to 
determine if they have any semantics and therefore are more 
likely to be correct segments; the grammar rules are then 
invoked to make final segmentation decisions. This 
technology achieves 95 percent accuracy in segmentation. 

An alternative approach to Japanese word processing 
technology is the development of an architecture for Japanese 
segmentation and part of speech labeling shown in Figure 1 
[Matsukawa, et. al. 1993]. 

Japanese text 

I JUMAN 

AMED 

I POST 

word segments with part of speech 

Figure 1: BBN's JUMANIAMEDIPOST word segmentation 
and part of speech labeling architecture. 

The architecture of the system is as follows: 

JUMAN, a rule-based morphological processor 
which uses a 40,000 word lexicon and a 
connectivity matrix to determine word 
segmentation and part of speech labeling, 

2. AMED, a rule-based segmentation and part of 
speech correction system trained on parallel 
hypothesized and correct annotations of 
identical text, 

3. POST, a hidden Markov model which 
disambiguates segmentation and part of speech 
decisions. 
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This unified architecture achieved an error rate of 8.3% in word 
segmentation; this level of error can be attributed to JUMAN's 
relatively small lexicon and lack of sufficient training data for 
the AMED and POST modules. 

Dragon Systems' LINGSTAT machine translation system 
[Yamron, et. al., 1993] uses a maximum likelihood 
segmentation algorithm which, in essence, calculates all 
possible segmentations of a sentence using a large lexicon and 
chooses the one with the best score, or likelihood. The 
implementation uses a dynamic programming algorithm to 
make this search efficient. 

MAJESTY is a recently developed morphological preprocessor 
for Japanese text [Kitani, et. al., 1993]. On a test corpus, it 
achieved better than 98% accuracy in word segmentation and 
part of speech determination; this represents the state-of-the- 
art in such technology. 

Teller, et. al. [1994] present a probabilistic algorithm which 
uses character type information and bi-gram frequencies on 
characters in conjunction with a small knowledge base to 
segment non-kanji stnngs. While it is related to our hidden 
Markov model approach in that it is character-based and does 
not rely on any lexicons, it differs in that it reties on a certain 
amount of a priori knowledge about the morphology of the 
Japanese language. This algorithm achieved 94.4% accuracy 
in segmenting words in a test corpus. 

3. HIDDEN MARKOV MODEL 

Hidden Markov models are widely used stochastic processes 
which have two components. The first is an observable 
stochastic process that produces sequences of symbols from a 
given alphabet. This process depends on a separate hidden 
stochastic process that yields a sequence of states. Hidden 
Markov models can be viewed as finite state machines which 
generate sequences of symbols by jumping from one state to 
another and "emitting" an observation at each state. 

The general recognition problem, as stated in the literature, is: 
given a hidden Markov model, M, with n symbols and m 
states, and a sequence of observations, O = OlO2...o t, 
determine the most likely sequence of states, S = SlS2...s t 
which could yield the observed sequence of symbols. 

3.1. Model Development 

The hidden Markov model for Japanese word segmentation was 
designed with several goals in mind: 

• Avoiding an approach which relies on having a 
large lexicon of Japanese words. 

• Allow the model to be easily extensible (with 
new training, of course) to accommodate more 
data or a different language. 

While not of paramount importance, an 
algorithm which segments rapidly would be 
preferred; word segmentation is a pre- 
processing step in most Japanese text systems 
and should be as unobtrusive and transparent as 
possible. 

One possible algorithm for segmentation is to use a hidden 
Markov model to find the most likely sequence of words based 
on a brute force computation of every possible sequence of 
words; the POST component of the word segmentation 
architecture described in Section 2 uses a similar model. This, 
though, violates the above constraint of no reliance on a 
Japanese word lexicon. Given that we would like to avoid the 
overhead associated with constructing and using a word-based 
lexicon, we are therefore forced to approach the problem in a 
manner which focuses on discrete characters and their 
interrelationships. 

The segmentation model we developed avoids the need for both 
a lexicon of Japanese words and explicit rules. It takes 
advantage of the effectiveness of subsequences of two text 
characters in determining the presence or absence of a word 
boundary. In essence, we will show that the morphology of 
the Japanese language is such that 2-character sequences have 
some underlying meaning or significance with respect to word 
boundaries. 

To solidify this idea, let us focus on two unspecified text 
characters, k 1 and k 2. Suppose that out of 100 places in the 
training data where k 1 is followed by k 2, the vast majority of 
these occur at word boundaries. From a probabilistic 
viewpoint, we are justified in coming to the conclusion that 
"klk  2 denotes a word boundary". To complicate things, 
assume that out of 100 places where k 1 is followed by k 2, 50 
of these are at word boundaries and 50 are inside words. It 
would seem that no conclusions could be drawn from this 
situation. On the other hand, if we notice that the 50 instances 
of klk 2 at word boundaries all had word boundaries between k 1 
and the character preceding k 1, but none of the instances of 
klk 2 within a word had word boundaries before the kl,  then we 
can hypothesize the following relationship, where 'T' denotes 
a word boundary and k x is the character preceding kl: 

i fk x I k 1, then k 1 I k 2 otherwise klk  2 

This is exactly the sort of hidden structure that HMMs are 
geared towards uncovering. 

Proceeding in this manner, a model for Japanese word 
segmentation was developed which capitalizes on this idea of 
the significance of 2-character sequences in word boundary 
determination; the state transition diagram is shown in Figure 
2. In the model there are just two possible states, either a word 
boundary (B) or a word continuation (C). The observation 
symbols are all possible 2-character sequences The kanji 
alphabet consists of approximately 50,000 characters; of 
these, 6,877 form a standard character set which suits most 
text processing purposes [Miyazawa, 1990; Mori, et. al. 
1990]. Factoring in the size of the hiragana and katakana 
alphabets, the number of possible 2-character sequences 
generated exclusively by this subset approaches 5"107, a 
clearly unmanageable amount of data. An implicit assumption 
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of our model is that there is a small subset of all possible 2- 
character sequences which in fact accounts for a large 
percentage of the 2-character sequences normally used in 
written text. It is such a subset which the model hopes to 
uncover and use in further classification. 

B = w o r d  b o u n d a r y  
C = w o r d  cont inuat ion  

Figure 2: The state transition diagram for the Japanese word 
segmentation HMM. 

The algorithm proceeds by sliding a 2-character window over 
an input sentence and calculating how likely it is that each of 
these 2-character sequences is a word boundary or within a 
word, given the previous 2-character sequence's status as either 
a word boundary or continuation. In this manner, the model is 
a bi-gram model [Meteer, et. al., 1991] over 2-character 
sequences since it relies only on the previous state. It is 
important to note that consecutive 2-character windows 
overlap by one character. Figure 3 portrays the progression of 
the window across part of a line of text emitting the 2- 
character observation symbols. 

3.2. Training 

The model is trained using supervised training over a 
previously annotated corpus. Specifically, training is 
accomplished by taking the corpus of segmented text and 
simply counting the number of times each 2-character sequence 

• has a word boundary between its constituent 
characters 

• has no word boundary between its constituent 
characters 

and the number of times 

• word boundaries follow word continuations 

• word boundaries follow word boundaries 

• word continuations follow word boundaries 

• word continuations follow word continuations 

Seeing unknown 2-character sequences in the test data (those 
sequences that were absent from the training data) leads to 
observation probabilities of 0. To rectify this, upon coming 
across an unknown 2-character sequence in the test data, the 
algorithm assigns the observation an a priori probability by 
postulating that the sequence was actually seen once in the 
training data. This probability is a sufficiently low value, 
balancing the fact that the sequence was never seen when all 
possible symbols were being gathered, with the hypothesis 
that it might be a valid observation. This procedure is an 
admission that even extensive training might not attain 
complete coverage of the domain. 

3.4. Implementation Issues 

A l g o r i t h m  -- There are generally two basic algorithms for 
hidden Markov model recognition: the forward-backward 
algorithm and the Viterbi algorithm [Viterbi, 1967]. The 
forward-backward algorithm (Baum-Welch) computes the 
likelihood that the sequence of observation symbols was 
produced by any possible state sequence. The Viterbi model, 
on the other hand, computes the likelihoods based on the best 
possible state sequence and is more efficient to compute and 
train. The word segmentation HMM implementation uses the 
Viterbi approach. This difference is transparent and matters 
only at the implementation level. 

Kanji and Kana -- Due to their vast numbers, two bytes are 
needed to represent Japanese text characters rather than the 
conventional one byte for English characters. The 
implementation can easily support either one or two byte 
characters with few modifications. 

~ "  i~~"-i~'~ -- ~:~:~i~...,.....: .............. ~,~..,..~....,,.~:.~.~%~? . . , .~ . .~ '~. ~f~:...:...:..':~"%~'"%.?~"~,~, ~.~ .:,~, ~ ........ 

• ~ t ~  . . . .  ~ ~ T  ~ '  ~ "~ . . . . . .  " ~ ~'"'""~" :: • ~ " ~''': ~ " 

Figure 3: Diagram shows the 2-character window sliding over the sentence and uncovering the first 
four observations. 
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Sentence by Sentence Input -- The only assumption on 
the input to the hidden Markov model is that the text be pre- 
divided into sentences. Periods were the sole indicators of 
sentence endings that were used. This assumption is made to 
provide for the incremental processing of a body of text. 

4 .  E X P E R I M E N T S  A N D  A N A L Y S I S  

To train and test the hidden Markov model, a corpus of 5,529 
Japanese articles that was annotated by the MAJESTY system 
was used since a manually annotated corpus of sufficient size 
was not available. From these articles, 59,587 sentences 
(1,882,23'~t words) were used as training material and 634 
different sentences (21,430 words) were set aside as test data. 
When the trained model was run over the test sentences, it 
segmented 91.15% of the words correctly while achieving 
96.48% accuracy on word boundaries. The correct 
segmentation of a single word implies that: 

• both its beginning and ending word boundaries 
are.. determined correctly, and 

• no extra word boundaries are generated within 
the word. 

The results over distinct words are given in Table 1 and the 
results for word boundaries are in Table 2. 

Number 

total 21,430 
hypothesized 21,298 
correct 19,533 
incorrect 1,897 

% of  
total 

91.15 
8.85 

Table 1: Test results over words. 

Number % of  
total 

total 20,796 
hypothesized 20,664 
cor~ct 20,065 
over~enerated 
under~enerated 

Tab le  2: 
boundaries. 

96.48 
599 2.88 
731 3.52 

Test results over word 

These performance figures compare favorably with the 
previously reported results of the BBN Japanese word 
segmentation and part of speech algorithm. This system, 
described in Section 2 and currently in use in the BBN PLUM 
data extraction system, achieved 91.7% accuracy in word 

segmentation in a test. In addition, the word segmentation 
HMM was designed and implemented in under one person- 
week, whereas the aforementioned architecture and all its 
components took significantly longer. 

The performance figures listed above are telling; with a simple 
but cleverly constructed model, the system managed to 
correctly segment words at a respectable rate. This 
performance was achieved entirely without accessing any of 
the word lexicons that are traditionally employed in solving 
this problem. Furthermore, no rule bases are referred to; the 
algorithm simply relies on the structure of the training data to 
implicitly obtain a model of Japanese word segmentation. 

While the HMM both misses and imagines word boundaries, it 
is encouraging that the total numbers of hypothesized words 
and word boundaries are close to the true numbers. This assures 
us that the model is generating an appropriate number of 
boundaries, even though it is not completely accurate on all of 
them. 

The fact that the model performs to such a high degree has 
interesting implications regarding the morphology of the 
Japanese language. The model relies on the idea that 
consecutive characters are significant with regards to whether 
or not they will be separated by a word boundary. This 
suggests that there is a set of pairs of characters which rarely 
occur next to one another within the same word; these are the 
2-character boundary sequences used in the HMM and include at 
least the katakana character set as an edge. Furthermore, there 
must be another set of character pairs which are frequently 
found in succession in the same word, corresponding to the 
model's 2-character continuation sequences. 

4.1. Training Set Size 

As with any stochastic model, this HMM relies on an accurate 
set of probabilities which reflect the true nature of the domain. 
The limiting factor here, barring any gross problems with the 
model, is the amount of data on which the model is trained. 
Clearly, when the training procedure sees the first few 
examples, the HMM is a very poor representation of Japanese 
word boundaries. As such, a large amount of information is 
collected in a relatively short period of time in the initial 
stages of learning. The model will eventually become more 
complete as it sees a larger and larger portion of the possible 
2-character sequences. 

Determining where the size of the training set no longer seems 
to be having a great impact on the performance of the 
algorithm is of interest as we can find out if the model is under- 
trained or over-trained. To get a sense for this, the model was 
trained on successively larger test sets, starting with a very 
small training set of 123 words up to the 1,882,231 word set, 
and then run over the 21,430 word test set and evaluated. 
Figure 4 summarizes the results of these experiment. 
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Figure 4: Effect of training set size on performance. 

Using a logarithmic scale for the axis representing training set 
size gives a feeling for the additional performance accrued from 
more training, while factoring in the impact of the 
exponentially increasing advances in computing technology. 
Based on the graph, we can see that while the word 
segmentation error rate is diminishing more slowly as the 
training set size increases to 1,882,231 words (the final point 
plotted), the curve still exhibits a downward trend. This 
implies that additional training could improve the accuracy of 
this model. 
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° ~  
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Figure 5: Number of unique 2-character sequences. 

As expected, the largest increase in performance occurs over 
the initial 30,000 words where the word segmentation error 
rate goes from 75% to 25%. At approximately 150,000 words, 
the rate of change in the error rate decreases significantly, but 
still shows a distinct downward trend. Furthermore, the 

difference between the word segmentation error rate and word 
boundary determination error rate is continuously shrinking; 
it is expected that with additional training data the gap 
between the curves will diminish. 

To portray the amount of new information that is received over 
time, Figure 5 shows the number of unique 2-character 
sequences in each of the successively increasing training sets. 
It is interesting to note that the model is continuously seeing 
new 2-character sequences at a steady, though slightly 
decreasing, rate. By the time the training set numbers 50,000 
words, the most common 2-character sequences have been seen 
and further training data, while improving test performance, 
provides diminishing returns due to the relative rarity of these 
new sequences. 

5.  C O N C L U S I O N  

We have implemented and described a hidden Markov model for 
Japanese word segmentation. The bi-gram model is 
characterized by an unconventional set of observation 
symbols, namely, the set of 2-character sequences. The model 
is also extremely simple in that it consists of only two states 
which encode the existence or absence of a word boundary 
between any two characters. This probabilistic model was 
trained over a large corpus of annotated data and then tested 
over a different set of data to measure performance; it achieves 
word segmentation accuracy of 91.15% and determines 96.48% 
of all the word boundaries correctly. When contrasted with the 
state-of-the-art, the HMM emerges as a worthy contender to 
related algorithms based on several observations: 
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1. First and foremost, this HMM approach 
completely circumvents the need for Japanese 
word lexicons which other approaches heavily 
rely upon; the storage issues and overhead for 
word look-up are thus avoided. 

2. The rules that a knowledge-based system would 
use are, in effect, implicit in the probabilities 
determined during supervised training and 
exactly reflect the morphology of Japanese 
word boundaries. 

3. The HMM segments text at a blistering pace, 
approximate ly  10,000 words/second not 
including initialization time. 

4. The model is designed to be easily extensible 
with additional data or to a different language; 
no lexicons are needed, simply a sufficiently 
large body of text on which the algorithm can 
be trained. 

Most disappointing about the performance of the model is the 
large discrepancy between the word accuracy and the word 
boundary accuracy. This is surely a side-effect of the bi-gram 
model topology; there is no way to relate the beginning and 
ending boundaries of a single word with this model unless the 
word begins and ends in consecutive states (a one-character 
word). 

Regardless, it is interesting and impressive that a two state bi- 
gram model can model Japanese word boundaries so 
effectively. With additional training data, we anticipate that 
the algorithm's performance will increase. The next 
generation of this model should somehow incorporate and 
model the relationship between boundaries of the same word in 
an effort to raise the word segmentation accuracy closer to the 
accuracy level of word boundary determination. Another 
modif icat ion to the algori thm which might improve 
performance is extending it to be a tri-gram model. The HMM 
could also be trained and tested on a different language, 
Chinese for instance, to see how well it performs. 

The results of this research are encouraging; the re-training 
and extensions noted above should be pursued to increase 
accuracy and to obtain a sense of how generally applicable to 
comparable domains this hidden Markov model is. 
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