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Abstract

Generating paraphrases from given sentences
involves decoding words step by step from
a large vocabulary. To learn a decoder, su-
pervised learning which maximizes the likeli-
hood of tokens always suffers from the expo-
sure bias. Although both reinforcement learn-
ing (RL) and imitation learning (IL) have been
widely used to alleviate the bias, the lack
of direct comparison leads to only a partial
image on their benefits. In this work, we
present an empirical study on how RL and
IL can help boost the performance of gener-
ating paraphrases, with the pointer-generator
as a base model 1. Experiments on the bench-
mark datasets show that (1) imitation learning
is constantly better than reinforcement learn-
ing; and (2) the pointer-generator models with
imitation learning outperform the state-of-the-
art methods with a large margin.

1 Introduction

Generating paraphrases is a fundamental research
problem that could benefit many other NLP tasks,
such as machine translation (Bahdanau et al.,
2014), text generation (Radford et al., 2019),
document summarization (Chopra et al., 2016),
and question answering (McCann et al., 2018).
Although various methods have been developed
(Zhao et al., 2009; Quirk et al., 2004; Barzi-
lay and Lee, 2003), the recent progress on para-
phrase generation is mainly from neural net-
work modeling (Prakash et al., 2016). Particu-
larly, the encoder-decoder framework is widely
adopted (Cho et al., 2015), where the encoder
takes source sentences as inputs and the decoder
generates the corresponding paraphrase for each
input sentence.

1The data and code for this work can be ob-
tained from: https://github.com/ddddwy/
Reinforce-Paraphrase-Generation

In supervised learning, a well-known chal-
lenge of generating paraphrases is the exposure
bias: the current prediction is conditioned on the
ground truth during training but on previous pre-
dictions during decoding, which may accumulate
and propagate the error when generating the text.
To address this challenge, prior work (Li et al.,
2018) suggests to utilize the exploration strategy
in reinforcement learning (RL). However, train-
ing with the RL algorithms is not trivial and often
hardly works in practice (Dayan and Niv, 2008).
A typical way of using RL in practice is to train
the model with supervised learning (Ranzato et al.,
2015; Shen et al., 2015; Bahdanau et al., 2016),
which leverages the supervision information from
training data and alleviate the exposure bias to
some extent. In the middle ground between RL
and supervised learning, a well-known category is
imitation learning (IL) (Daumé et al., 2009; Ross
et al., 2011), which has been used in structured
prediction (Bagnell et al., 2007) and other sequen-
tial prediction tasks (Bengio et al., 2015).2

In this work, we conduct an empirical compar-
ison between RL and IL to demonstrate the pros
and cons of using them for paraphrase generation.
We first propose a unified framework to include
some popular learning algorithms as special cases,
such as the REINFORCE algorithm (Williams,
1992) in RL and the DAGGER algorithm (Ross
et al., 2011) in IL. To better understand the value
of different learning techniques, we further of-
fer several variant learning algorithms based on
the RL framework. Experiments on the bench-
mark datasets show: (1) the DAGGER algorithm
is better than the REINFORCE algorithm and its
variants on paraphrase generation, (2) the DAG-
GER algorithm with a certain setting gives the best

2In this work, we view scheduled sampling (Bengio et al.,
2015) as an imitation learning algorithm similar to DAG-
GER (Ross et al., 2011).

https://github.com/ddddwy/Reinforce-Paraphrase-Generation
https://github.com/ddddwy/Reinforce-Paraphrase-Generation
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results, which outperform the previous state-of-
the-art with about 13% on the average evaluation
score. We expect this work will shed light on how
to choose between RL and IL, and alleviate the ex-
posure bias for other text generation tasks.

2 Method

Given an input sentence x = (x1, x2, · · · , xS)
with length S, a paraphrase generation model out-
puts a new sentence y = (y1, y2, · · · , yT ) with
length T that shares the same meaning with x. The
widely adopted framework on paraphrase genera-
tion is the encoder-decoder framework (Cho et al.,
2014). The encoder reads sentence x and repre-
sents it as a single numeric vector or a set of nu-
meric vectors. The decoder defines a probabil-
ity function p(yt | yt�1,x;✓), where yt�1 =
(y1, y2, . . . , yt�1) and ✓ is the collection of model
parameters,

p(yt | yt�1,x;✓) = softmax (Wht) (1)

with ht = f(ht�1, yt�1,x), where f as a non-
linear transition function and W 2 ✓ as a param-
eter matrix. We use the pointer-generator model
(See et al., 2017) as the base model, which is
state-of-the-art model on paragraph generation (Li
et al., 2018). We skip the detail explanation of this
model and please refer to (See et al., 2017) for fur-
ther information.

2.1 Basic Learning Algorithms

To facilitate the comparison between RL and IL,
we propose a unified framework with the follow-
ing objective function. Given a training example
(x,y), the objective function is defined as

L(✓) =
� TX

t=1

log ⇡✓(ỹt | ht)
 
· r(ỹ,y), (2)

Following the terminology in RL and IL, we re-
name P (ỹt | yt�1,x;✓) as the the policy func-
tion ⇡✓(ỹt | ht). That implies taking an action
based on the current observation, where the ac-
tion is picking a word ỹt from the vocabulary V .
r(ỹ,y) is a reward function with r(ỹ,y) = 1 if
ỹ = y. In our experiments, We use the ROUGE-
2 score (Lin, 2004) as the reward function. Al-
gorithm 1 presents how to optimize L(✓) in the
online learning fashion. As shown in the pseu-
docode, the schedule rates (↵,�) and the decod-

ing function Decode(·) are the keys to under-
stand the special cases of this unified framework.

Algorithm 1 Online learning

1: Input: A training example (x(i),y(i)), cur-
rent schedule rates ↵(i),�(i) 2 [0, 1], learning
rate ⌘

2: Initialize L(✓) 0
3: for t = 1, . . . , T do

4: p1, p2 ⇠ Uniform(0, 1)
5: ỹt�1  yt�1 if (p1 < ↵(i)) else ŷt�1

6: ht = f(ht�1, ỹt�1,x)
7: ŷt  Decode(⇡(y | ht))
8: ỹt  yt if (p2 < �(i)) else ŷt
9: L(✓) L(✓) + log ⇡(ỹt | ht)

10: end for

11: �✓  r✓L(✓) · r( ˜y(i),y(i))
12: ✓  ✓ + ⌘ · �✓

The REINFORCE Algorithm. When ↵ = 0,
� = 0, and Decode(⇡(y | ht)) is defined as as:

Decode(⇡✓(y | ht�1))

= Random Sampling(⇡✓(y | ht�1)),
(3)

Specifically, when ↵ = � = 0, both ỹt�1 and ỹt
will choose the sampled values from the Decode
function with policy ⇡✓. It essentially samples
a trajectory from the decoder (ŷ1, ŷ2, . . . , ŷT ) as
in the REINFORCE algorithm. The reward is
r(ỹ,y) = r(ŷ,y) once it has the entire trajectory
ŷ.

The DAGGER Algorithm. When 0 < ↵ < 1,
� = 1, and Decode(⇡(y | ht)) is defined as as:

Decode(⇡✓(y | ht�1)) = argmax
y0

⇡✓(y
0 | ht�1).

(4)
Depending the value of ↵, ỹt�1 will choose be-
tween the ground truth yt�1 and decoded value
ŷt�1 with the function defined in Equation 4. On
the other hand, ỹt will always choose the ground
truth yt as � = 1. Since ỹ = y, we have
r(ỹ,y) = 1 and the reward can be ignored from
Equation 2. In imitation learning, ground truth se-
quence y is called expert actions. The DAGGER
algorithm (Ross et al., 2011) is also called sched-
uled sampling (Bengio et al., 2015) in recent deep
learning literature. To be accurate, in the DAGGER
and the scheduled sampling, the ↵ is dynamically
changed during training. Typically, it starts from 1
and gradually decays to a certain value along with
iterations. As shown in our experiments, the selec-
tion of decay scheme has a big impact on model
performance.
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The MLE Algorithm. Besides, there is a triv-
ial case when ↵ = 1,� = 1. In this case, ỹt�1

and ỹt are equal to yt�1 and yt respectively, and
r(ỹ,y) = 1. Optimizing the objective function in
Equation 2 is reduced to the maximum likelihood
estimation (MLE).

2.2 Other Variant Algorithms

Inspired by the previous three special cases, we
offer other algorithm variants with different com-
binations of (↵,�), while the decoding function
Decode(⇡(y | ht)) in the same as Equation 3 in
all following variants.

• REINFORCE-GTI (REINFORCE with
Ground Truth Input): ↵ = 1, � = 0. Unlike
the REINFORCE algorithm, REINFORCE-
GTI restricts the input to the decoder can
only be ground truth words, which means
ỹt�1 = yt�1. This is a popular implementa-
tion in the deep reinforcement learning for
Seq2Seq models (Keneshloo et al., 2018).

• REINFORCE-SO (REINFORCE with Sam-
pled Output): ↵ = 1, 0 < � < 1. In terms
of choosing the value of ỹt as output from the
decoder, REINFORCE-SO allows ỹt to select
the ground truth yt with probability �.

• REINFORCE-SIO (REINFORCE with Sam-
pled Input and Output): 0 < ↵ < 1, 0 <
� < 1. Instead of always taking the ground
truth yt�1 as input, REINFORCE-SIO further
relaxes the constraint in REINFORCE-SO and
allows ỹt�1 to be the decoded value ŷt�1 with
probability ↵.

Unless specified explicitly, an additional re-
quirement when 0 < ↵,� < 1 is that its value
decays to a certain value during training, which by
default is 0.

3 Experiments

Dataset and Evaluation Metrics. We evaluate
our models on the Quora Question Pair Dataset 3,
and the Twitter URL Paraphrasing Dataset (Lan
et al., 2017) 4. Both datasets contain positive and
negative examples of paraphrases, and we only
keep the positive examples for our experiments as
in prior work of paraphrase generation (Li et al.,

3https://www.kaggle.com/c/
quora-question-pairs

4https://languagenet.github.io

2018; Patro et al., 2018). For the Quora dataset,
we follows the configuration of (Li et al., 2018)
and split the data into 100K training pairs, 30K
testing pairs and 3K validation pairs. For the
Twitter dataset, since our model cannot deal with
the negative examples as (Li et al., 2018) do, we
just obtain the 1-year 2,869,657 candidate pairs
from https://languagenet.github.io,
and filter out all negative examples. Finally, we
divided the remaining dataset into 110K training
pairs, 3K testing pairs and 1K validation pairs.

We use the following evaluation metrics to com-
pare our models with other state-of-art neural
networks: ROUGE-1 and ROUGE-2 (Lin, 2004),
BLEU with up to bi-grams (Papineni et al., 2002).
For the convenience of comparison, we also calcu-
late the average of the scores.

Competitive Systems. We compare our results
with four competitive systems on paraphrase gen-
eration: the sequence-to-sequence model (Bah-
danau et al., 2014, Seq2seq), the Reinforced
by Matching framework (Li et al., 2018, RbM),
the Residual LSTM (Prakash et al., 2016, Res-
LSTM), and the Discriminator LSTM model (Pa-
tro et al., 2018, Dis-LSTM). Among these com-
petitive systems, the RbM (Li et al., 2018) is more
closely related to our work, since we both use
the pointer-generator as the base model and apply
some reinforcement learning algorithms for policy
learning.

Experimental Setup. We first pre-train the
pointer-generator model with MLE, then fine-tune
the models with various algorithms proposed in
section 2. Pre-training is critical to make the RE-
INFORCE algorithm and some variants to work.
More implementation details are provided in Ap-
pendix A.

Result Analysis. Table 1 shows the model per-
formances on the Quora test set, and Table 2 shows
the model performances on the Twitter test set. For
the Quora dataset, all our models outperform the
competitive systems with a large margin. We sus-
pect the reason is because we ran the development
set during training on-the-fly, which is not the ex-
perimental setup used in (Li et al., 2018).

For both datasets, we find that DAGGER with
a fixed (↵,�) gives the best performance among
all the algorithm variants. The difference between
DAGGER and DAGGER* is that, in DAGGER, we
use the decay function on ↵ at each iteration,

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://languagenet.github.io
https://languagenet.github.io
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SCHEDULE RATE EVALUATION METRICS

Models ↵ � ROUGE-1 ROUGE-2 BLEU Avg-Score

1 Seq2Seq - - 58.77 31.47 36.55 42.26
2 Res-LSTM - - 59.21 32.43 37.38 43.00
3 RbM - - 64.39 38.11 43.54 48.68
4 Dis-LSTM - - - 44.90 45.70 45.30

5 PRE-TRAINED MLE ↵ = 1 � = 1 66.72 47.70 54.01 56.14
6 REINFORCE ↵ = 0 � = 0 67.00 47.91 54.06 56.32
7 REINFORCE-GTI ↵ = 1 � = 0 67.03 48.10 54.23 56.45
8 REINFORCE-SO ↵ = 1 � ! 0 66.88 47.95 54.16 56.33
9 REINFORCE-SIO ↵! 0 � ! 0 67.62 48.99 55.19 57.26

10 DAGGER ↵! 0 � = 1 67.64 48.96 55.06 57.22
11 DAGGER* ↵ = 0.5 � = 1 68.34 49.99 55.75 58.02

Table 1: Performance on Quora dataset. The results of competitive systems are reprinted from prior work: line 1
– 3 are obtained from (Li et al., 2018), line 4 is obtained from (Patro et al., 2018). The average score in the last
column is for the convenience of comparison.

SCHEDULE RATE EVALUATION METRICS
Models ↵ � ROUGE-1 ROUGE-2 BLEU Avg-Score

1 PRE-TRAINED MLE ↵ = 1 � = 1 58.49 43.84 38.45 46.92
2 REINFORCE ↵ = 0 � = 0 58.67 44.06 38.46 47.06
3 REINFORCE-GTI ↵ = 1 � = 0 58.58 43.89 38.42 46.96
4 REINFORCE-SO ↵ = 1 � ! 0 58.58 43.89 38.41 46.96
5 REINFORCE-SIO ↵! 0 � ! 0 58.82 44.10 38.85 47.25
6 DAGGER ↵! 0 � = 1 58.84 44.24 38.95 47.34
7 DAGGER* ↵ = 0.2 � = 1 58.95 44.34 39.04 47.44

Table 2: Performance on Twitter dataset. Since the dataset we obtained is different from (Li et al., 2018), we do
not directly compare the results with the prior works.

↵  k · ↵ with k = 0.9999. In our experiments,
we also try different decaying rates, and present
the best results we obtained (more details are pro-
vided in Table B). The selection of ↵ depends on
the specific task: for the Quora dataset, we find
↵ = 0.5 gives us the optimal policy; for the Twit-
ter dataset, we find ↵ = 0.2 gives us the optimal
policy.

As shown in line 6 – 11 from Table 1, the addi-
tional training with whichever variant algorithms
can certainly enhance the generation performance
over the pre-trained model (line 5). This obser-
vation is consistent with many previous works of
using RL/IL in NLP. However, we also notice that
the improvement of using the REINFORCE algo-
rithm (line 6) is very small, only 0.18 on the aver-
age score.

As shown in line 2 – 7 from Table 2, the
additional training with variant algorithms also

shows improved performance over the pre-trained
model (line 1). However, for the pointer-generator
model, it is more difficult to do paraphrase gen-
eration on the Twitter dataset. Since in the Twit-
ter dataset, one source sentence shares several dif-
ferent paraphrases, while in the Quora dataset,
one source sentence only corresponds to one para-
phrase. This explains why the average improve-
ment in the Twitter dataset is not as significant as
in the Quora dataset. Besides, from Table 2, we
also find that IL (line 6 – 7) outperforms RL (line
2 – 3), which is consist with the experimental re-
sults in Table 1.

Overall, in this particular setting of paraphrase
generation, we found that DAGGER is much easier
to use than the REINFORCE algorithm, as it always
takes ground truth (expert actions) as its outputs.
Although, picking a good decay function ↵ can be
really tricky. On the other hand, the REINFORCE
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algorithm (together with its variants) could only
outperform the pre-trained baseline with a small
margin.

4 Related Work

Paraphrase generation has the potential of being
used in many other NLP research topics, such as
machine translation (Madnani et al., 2007) and
question answering (Buck et al., 2017; Dong et al.,
2017). Early work mainly focuses on extract-
ing paraphrases from parallel monolingual texts
(Barzilay and McKeown, 2001; Ibrahim et al.,
2003; Pang et al., 2003). Later, Quirk et al.
(2004) propose to use statistical machine transla-
tion for generating paraphrases directly. Despite
the particular MT system used in their work, the
idea is very similar to the recent work of using
encoder-decoder frameworks for paraphrase gen-
eration (Prakash et al., 2016; Mallinson et al.,
2017). In addition, Prakash et al. (2016) extend
the encoder-decoder framework with a stacked
residual LSTM for paraphrase generation. Li
et al. (2018) propose to use the pointer-generator
model (See et al., 2017) and train it with an
actor-critic RL algorithm. In this work, we also
adopt the pointer-generator framework as the base
model, but the learning algorithms are developed
by uncovering the connection between RL and IL.

Besides paraphrase generation, many other
NLP problems have used some RL or IL algo-
rithms for improving performance. For example,
structured prediction has more than a decade his-
tory of using imitation learning (Daumé et al.,
2009; Chang et al., 2015; Vlachos, 2013; Liu et al.,
2018). In addition, scheduled sampling (as an-
other form of DAGGER) has been used in sequence
prediction ever since it was proposed in (Bengio
et al., 2015). Similar to IL, reinforcement learn-
ing, particularly with neural network models, has
been widely used in many different domains, such
as coreference resolution (Yin et al., 2018), docu-
ment summarization (Chen and Bansal, 2018), and
machine translation (Wu et al., 2018).

5 Conclusion

In this paper, we performed an empirical study on
some reinforcement learning and imitation learn-
ing algorithms for paraphrase generation. We pro-
posed a unified framework to include the DAGGER
and the REINFORCE algorithms as special cases
and further presented some variant learning algo-

rithms. The experiments demonstrated the benefits
and limitations of these algorithms and provided
the state-of-the-art results on the Quora dataset.
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