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Abstract

Recurrent neural networks can learn to predict
upcoming words remarkably well on average;
in syntactically complex contexts, however,
they often assign unexpectedly high probabil-
ities to ungrammatical words. We investigate
to what extent these shortcomings can be miti-
gated by increasing the size of the network and
the corpus on which it is trained. We find that
gains from increasing network size are min-
imal beyond a certain point. Likewise, ex-
panding the training corpus yields diminishing
returns; we estimate that the training corpus
would need to be unrealistically large for the
models to match human performance. A com-
parison to GPT and BERT, Transformer-based
models trained on billions of words, reveals
that these models perform even more poorly
than our LSTMs in some constructions. Our
results make the case for more data efficient
architectures.

1 Introduction

Recurrent neural network language models (LMs)
can learn to predict upcoming words with remark-
ably low perplexity (Mikolov et al., 2010; Joze-
fowicz et al., 2016; Radford et al., 2019). This
overall success has motivated targeted paradigms
that measure whether the LM’s predictions reflect
a correct analysis of sentence structure. One such
evaluation strategy compares the probability as-
signed by the LM to a minimal pair of sentences
differing only in grammaticality (Linzen et al.,
2016). In the following example, the LM is ex-
pected to assign a higher probability to the sen-
tence when the verb agrees in number with the
subject (1a) than when it does not (1b):

(1) a. The author laughs.
b. *The author laugh.

RNN LMs have been shown to favor the grammat-

ical variant in the vast majority of cases sampled
at random from a corpus (Linzen et al., 2016), but
their accuracy decreases in the presence of dis-
tracting nouns intervening between the head of the
subject and the verb, especially when those nouns
are in relative clauses (Marvin and Linzen, 2018).
Can we hope to address these deficits by train-
ing larger and larger networks on larger and larger
corpora, relying on the “unreasonable effective-
ness” of massive datasets (Halevy et al., 2009) and
computational power?1 Or would architectural ad-
vances be necessary to improve our LMs’ syntac-
tic representations (Kuncoro et al., 2018)?

This paper takes a first step towards address-
ing this question. We train 125 RNN LMs with
long short-term memory (LSTM, Hochreiter and
Schmidhuber, 1997) units, systematically varying
the size of the training corpus and the dimension-
ality of the models’ hidden layer, and track the re-
lationship between these parameters and the per-
formance of the models on agreement dependen-
cies in a range of syntactic constructions (Marvin
and Linzen, 2018). We also compare our RNNs’
accuracy to that of GPT (Radford et al., 2018) and
BERT (Devlin et al., 2019), Transformer-based
LMs trained on very large corpora.

We find that model capacity does not consis-
tently improve performance beyond a minimum
threshold. Increased corpus size likewise has a
moderate and inconsistent effect on accuracy. We
estimate that even if training data yielded con-
sistent improvements, an unreasonable amount of
data would be required to match human accuracy.
We conclude that reliable and data-efficient learn-
ing of syntax is likely to require external supervi-
sion signals or a stronger inductive bias than that
provided by RNNs and Transformers.

1http://www.incompleteideas.net/
IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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2 Language models

Architecture: All of the models we trained con-
sisted of two LSTM layers. We trained models
with 100, 200, 400, 800 or 1600 units in each
hidden layer. Input and output weights were tied
during training (Press and Wolf, 2017; Inan et al.,
2017); consequently, the input embedding had the
same dimensionality as the hidden layers.

Training data: We trained networks of each
size on 2M, 10M, 20M, 40M and 80M words
(2M = 2 million). We extracted five disjoint sec-
tions of the WikiText-103 corpus (Merity et al.,
2016) for each corpus size;2 in total, we trained
125 models (5 layer sizes × 5 corpus sizes × 5
corpus subsets).3 We used the WikiText-103 vali-
dation set for validation.

Vocabulary: To ensure comparability across
different models trained on different data, we used
the same vocabulary for all the models we trained.
The vocabulary consisted of an intersection of the
400k word GloVe vocabulary (Pennington et al.,
2014) with the 50k words used by GRNN (see be-
low); the resulting vocabulary had 28,438 words.

GRNN: We also report the syntactic perfor-
mance of a publicly available LSTM LM (Gulor-
dava et al., 2018, henceforth GRNN). This trained
model has been the focus of a considerable amount
of analysis work in the past year. The model has
two layers of 650 units each, and was trained on
80M words.

Comparison with Transformers: Finally, we
report results from two publicly available LMs
based on non-recurrent self-attention (Transform-
ers; Vaswani et al., 2017): GPT (Radford et al.,
2018) and BERT (Devlin et al., 2019). Both of
these models have been argued to learn powerful
syntactic representations (Goldberg, 2019; Wolf,
2019). We compare our results to those reported
by Wolf (2019) on a similar challenge set for these
two Transformer models.4

2We made each of the 40M- and 80M-token training sets
as disjoint as possible, but since Wikitext-103 only contains
103M tokens, it was not possible to make them wholly dis-
joint using Wikitext-103 as the mother corpus.

3Each model was initialized randomly and was trained to
convergence with a dropout of 0.2 using a batch size of 20,
backpropagating error for 35 observations. An initial learning
rate of 20 was gradually annealed.

4The comparison is not exact because the Transformers
were evaluated based on the rank of the two target verbs given
the prefix, and the LSTMs based on the total log-probability

GPT is a 12-layer Transformer with 110 million
parameters (compared to GRNN’s 39 million pa-
rameters); it was trained on 1 billion words. BERT
has a similar architecture to GPT,5 with three dif-
ferences: it is bidirectional, it was trained on 3.3
billion words, and it has a different training objec-
tive than the typical LM: it attempts to predict a
single masked word in a sentence given the words
both before and after the target word. For compa-
rability to the LSTMs and GPT, we examine the
agreement performance of BERT when only the
words before the target are given (in contrast to the
bidirectional tests reported by Goldberg 2019).

3 Evaluation

We tested each trained model on the constructions
from the Marvin and Linzen (2018) challenge set,
which is based on the agreement paradigm de-
scribed in the introduction.6 We replaced the
verbs used by Marvin and Linzen with the high-
frequency verbs is/are, was/were and has/have.
This was done to ensure that even the models
trained on smaller corpora will have had exposure
to both forms of the verb in question.

We performed statistical tests of our hypothe-
ses using Bayes factors, which quantify the sup-
port the data provide for a more complex model
compared to a simpler one (Rouder et al., 2009).
We computed two-sample Bayes factors using
ttestBF from the BayesFactor R package
(Morey and Rouder, 2018) using default settings.
Our null hypothesis was that there is no differ-
ence in accuracy between the two sets of models in
question (e.g., all models with 400 units per layer
compared to all models with 800 units per layer).
The magnitude of the resulting Bayes factor K can
be interpreted as follows (Jeffreys, 1961): K < 1
indicates that there is no difference in accuracy be-
tween the two model groups, and K > 10 pro-
vides strong evidence that the model groups obtain
different accuracies.

4 Results

Increasing model size improved syntactic predic-
tion accuracy up to 400 units per layer; further in-
of the sentence (including the final period); in addition, Wolf
(2019) did not modify the dataset to use only high frequency
verbs, as we describe in Section 3.

5BERT Base showed more accurate syntactic predictions
than BERT Large (Goldberg, 2019), which has more param-
eters, so we only consider BERT Base.

6https://github.com/BeckyMarvin/LM_
syneval

https://github.com/BeckyMarvin/LM_syneval
https://github.com/BeckyMarvin/LM_syneval
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Corpus size Layer size

2M→ 10M 5508.8 100→ 200 768.5
10M→ 20M 0.1 200→ 400 63.5
20M→ 40M 12.9 400→ 800 0.2
40M→ 80M 0.2 800→ 1600 0.1

Table 1: Strength of evidence for improvements in
agreement prediction accuracy as a result of increasing
corpus size averaging across layer size (left) or layer
size averaging across corpus size (right), as quantified
by Bayes factors. Boldfaced Bayes factors indicate
strong evidence of improvement.

creases in model size had no effect (see Table 1
for the statistical tests). Increasing the amount of
training data impacted accuracy in an inconsistent
way. Training on 10M tokens produced general
improvements across all constructions compared
to 2M tokens. Doubling the corpus to 20M did not
affect accuracy, but doubling it again to 40M did.
There was no evidence of further improvement be-
tween 40M and 80M words.

In the remainder of this section we analyze the
effect of increasing model size and training cor-
pus size on the models’ predictions for each con-
struction in the data set.7 A subset of the results is
shown in Fig. 1; for the full results, see Figs. 3, 4
and 5 in the Appendix.

Local number agreement: All models trained
on 10M words or more obtained perfect or near-
perfect accuracy (mean > 99%) in the cases where
the verb was adjacent to its subject: simple agree-
ment (the author has/*have books) and agreement
within a sentential complement (the mechanics
said the author has/*have books). When trained
on 2M words, the models performed slightly
worse, but their accuracy was still very high (mean
95.6%), regardless of model size. Overall, we con-
clude that the plurality of specific nouns and the
generalization that a verb has to agree with a noun
can be learned very quickly.

Attractors: Agreement across subject relative
clauses (the author that likes the guards has/*have
books) and across prepositional phrases (the au-
thor next to the guards has/*have books; Fig. 1a)
benefited from increasing the hidden layer size to
400, but showed little improvement when hidden

7See Table 2 in the Appendix for a Bayes factor analysis
of the improvement in each construction for each amount of
training data.

layer size was increased further. Accuracy in these
constructions consistently improved as the amount
of training data increased.

Object relative clauses: Expanding the train-
ing corpus improved local agreement within ob-
ject relative clauses (the movies that the guard
has/*have are good; Fig. 1b) for all model sizes,
but only improved agreement across those clauses
(the movie that the guards like has/*have drama;
Fig. 1c) in models with larger hidden layers.
Larger hidden layers improved accuracy in object
relatives only when a relativizer was present, and
only up to about 80% accuracy. When a sentence
lacked an overt relativizer (the movies the secu-
rity guard has/*have are good; Fig. 1d), all mod-
els performed poorly, with accuracy levelling off
around 70%.

Coordination: Perhaps surprisingly, all LSTM
LMs struggled with agreement in a coordinated
verb phrase (the authors laugh and have/*has
books; Fig. 1e), even though this construction does
not include distracting nouns between the subject
and the second verb. In larger models trained on
more data, accuracy was higher when the second
verb was further from the subject (the authors
know many different languages and have/*has
books; Fig. 1f).

Training on more than 10M tokens did not im-
prove accuracy in short VP coordination, even
when the amount of data was multiplied by eight
(10M→ 80M: K < 1), unlike coordination across
long VPs, which benefited from additional data
(10M → 80M: K > 90). These results further
challenge the assumption that increased amounts
of training data will lead to adequately abstract
syntactic representations: RNNs show a limited
ability to generalize from instances of a construc-
tion that have longer constituents to instances with
shorter constituents.

Reflexive anaphora: A reflexive pronoun such
as themselves must have an antecedent with the
appropriate plurality in the same clause as the
pronoun (The manager that the architects like
doubted himself/*themselves). Accuracy was not
strongly affected by the parameters we varied: re-
flexive agreement accuracy across a relative clause
was consistently mediocre (61%–76%) regardless
of model size or the amount of training data.



5834

100 200 400 800 1600
Hidden Size

0.0

0.2

0.4

0.6

0.8

1.0
Ag

re
em

en
t A

cc
ur

ac
y

Chance

GRNN
GPTBERT
Human

The author next to the security guards
 has/*have books .

Corpus Size
2m
10m
20m
40m
80m

(a) Prepositional Phrase
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(b) Object Relative: Within

100 200 400 800 1600
Hidden Size

0.0

0.2

0.4

0.6

0.8

1.0

Ag
re

em
en

t A
cc

ur
ac

y

Chance

GRNN
GPT
BERT
Human

The movie that the security guard likes
 has/*have drama. 

Corpus Size
2m
10m
20m
40m
80m

(c) Object Relative: Across
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(d) Object Relative: Across (no that)
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(e) VP Coordination (Short)
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Figure 1: LSTM agreement performance in several syntactic constructions. The solid horizontal line indicates
chance performance. The dashed lines show the performance of GPT and BERT as reported by Wolf (2019), the
performance of humans as reported by Marvin and Linzen (2018), and the performance of GRNN. Error bars
reflect standard deviation across the five models in each category.

Transformers: Despite having more parameters
and having been trained on significantly larger cor-
pora, the two Transformer models performed ei-
ther as well as or more poorly than our LSTMs
in seven of the ten subject-verb agreement condi-
tions. BERT underperformed GPT in several con-
ditions despite having been trained on three times
as many tokens as GPT.8

8Goldberg (2019) reports much better results using a
setup in which BERT has access to both left and right con-

5 How much data would be enough?

How much training data would be required for an
LSTM LM to perform at a human level (as re-
ported by Marvin and Linzen 2018) in the condi-

text. We hypothesize that the task is made significantly sim-
pler when the model knows where the target word is relative
to the end of the sentence. For example, if the point of pre-
diction is at the last word of the sentence, it is also the last
point at which the verb agreeing with the main clause subject
could possibly occur; the model does not need to detect the
end of the relative clause to perform the task in this case.
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Figure 2: Lines depict number of training tokens
needed for LSTMs to achieve human-like (left) or
99.99% accuracy (right) in each syntactic agreement
condition, according to our estimates. Bars depict the
amount of data on which each model was trained.

tions in which our models do not already perform
at a human level? As a conservative estimate, we
measured the error reduction achieved by doubling
the data from 20M to 40M tokens (the largest error
reduction we observed beyond 2M→ 10M).9 Un-
der the assumption that each subsequent doubling
of training data would produce the same percent
error reduction, we predicted the amount of data
required to obtain human-like and 99.99% accu-
racy (see Fig. 2).10 We found that every remain-
ing construction would require over 10 billion to-
kens to achieve human-like performance, and most
would require trillions of tokens to achieve perfect
accuracy – an impractically large amount of train-
ing data, especially for these relatively simple syn-
tactic phenomena.

9See Tables 3 and 4 in the Appendix for data requirements
estimated from other error reduction rates.

10Human performance on this task is well known to be far
from perfect, with error rates approaching 25% in some con-
texts (Bock and Miller, 1991). While modeling human errors
is of considerable interest to cognitive scientists (Linzen and
Leonard, 2018), we believe that in most applied contexts it is
desirable for the model to make no errors at all.

6 Discussion

We have investigated the effect of network size
and training corpus size on the quality of the
syntactic representations of LSTM LMs, as mea-
sured by agreement prediction accuracy. Increased
model size had limited benefits; models with 400
hidden units performed significantly better than
smaller models, but further increases in network
size had no effect. The limited effect of net-
work size is consistent with previous findings on
sequence labeling tasks (Reimers and Gurevych,
2017; Greff et al., 2017). We have also shown that
increasing the amount of training data is unlikely
to result in human-like accuracy in all cases.

We found a striking difference in agreement ac-
curacy between short and long coordinated verb
phrases: performance on short phrases was poorer.
While RNNs are known to struggle with general-
izing short patterns to longer sequences, this pat-
tern constitutes a failure to generalize to shorter
sequences (cf. Trask et al., 2018); techniques for
improving longer distance dependency learning in
LMs (e.g., Trinh et al., 2018; Dai et al., 2019) are
unlikely to mitigate this deficit. This suggests that
challenge sets should include materials that can
be used to ascertain whether the model’s syntac-
tic representations are robust to syntactically irrel-
evant factors such as constituent length.

GPT and BERT, Transformer models trained on
very large corpora, did not consistently outper-
form the LSTMs trained on several orders of mag-
nitude less data. Other studies suggest that Trans-
former models suffer from similar problems as the
LSTMs we have analyzed. BERT’s agreement ac-
curacy decreases as the subject becomes more dis-
tant from its verb (Bacon and Regier, 2019). Dra-
matically increasing the pre-training corpus for a
BERT-like model from 562M words to 18G words
only leads to a modest improvement in its natu-
ral language inference accuracy, from 81.7% to
82.3% (Baevski et al., 2019). Overall, this body of
results points to the limited data efficiency of stan-
dard RNNs and Transformers, and indicates that
learning syntax from realistic amounts of data—in
particular the amount of data available to humans
when they learn language—may require syntac-
tically structured architectures or explicit syntac-
tic supervision (Enguehard et al., 2017; Kuncoro
et al., 2018, 2019; Wilcox et al., 2019).
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