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Abstract

We present a semi-supervised approach
to improve dependency parsing accuracy
by using bilexical statistics derived from
auto-parsed data. The method is based
on estimating the attachment potential of
head-modifier words, by taking into ac-
count not only the head and modifier
words themselves, but also the words sur-
rounding the head and the modifier. When
integrating the learned statistics as features
in a graph-based parsing model, we ob-
serve nice improvements in accuracy when
parsing various English datasets.

1 Introduction

We are concerned with semi-supervised depen-
dency parsing, namely how to leverage large
amounts of unannotated data, in addition to anno-
tated Treebank data, to improve dependency pars-
ing accuracy. Our method (Section 2) is based
on parsing large amounts of unannotated text us-
ing a baseline parser, extracting word-interaction
statistics from the automatically parsed corpus,
and using these statistics as the basis of additional
parser features. The automatically-parsed data is
used to acquire statistics about lexical interactions,
which are too sparse to estimate well from any
realistically-sized Treebank. Specifically, we at-
tempt to infer a function assoc(head,modifer)
measuring the “goodness” of head-modifier rela-
tions (“how good is an arc in which black is a mod-
ifier of jump”). A similar approach was taken by
Chen et al. (2009) and Van Noord et al. (2007). We
depart from their work by extending the scoring
to include a wider lexical context. That is, given
the sentence fragment in Figure 1, we score the
(incorrect) dependency arc (black, jump) based on
the triplets (the black fox,will jump over). Learn-
ing a function between word triplets raises an

extreme data sparsity issue, which we deal with
by decomposing the interaction between triplets
to a sum of interactions between word pairs.
The decomposition we use is inspired by recent
work in word-embeddings and dense vector rep-
resentations (Mikolov et al., 2013a; Mnih and
Kavukcuoglu, 2013). Indeed, we initially hoped
to leverage the generalization abilities associated
with vector-based representations. However, we
find that in our setup, reverting to direct count-
based statistics achieve roughly the same results
(Section 3).

Our derived features improve the accuracy of a
first-order dependency parser by 0.75 UAS points
(absolute) when evaluated on the in-domain WSJ
test-set, obtaining a final accuracy of 92.32 UAS
for a first-order parser. When comparing to the
strong baseline of using Brown-clusters based fea-
tures (Koo et al., 2008), we find that our triplets-
based method outperform them by over 0.27 UAS
points. This is in contrast to previous works (e.g.
(Bansal et al., 2014)) in which improvements over
using Brown-clusters features were achieved only
by adding to the cluster-based features, not by re-
placing them. As expected, combining both our
features and the brown-cluster features result in
some additional gains.

2 Our Approach

Our departure point is a graph-based parsing
model (McDonald et al., 2005):

parse(x) = argmax
y∈Y(x)

score(x, y)

score(x, y) = w · Φ(x, y) =
∑

part∈y

w · φ(x, part)

Given a sentence xwe look for the highest-scoring
parse tree y in the space Y(x) of valid dependency
trees over x. The score of a tree is determined by a
linear model parameterized by a weights vector w,
and a feature function Φ(x, y). To make the search
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Features in φij
lex(x, y)

bin(Sij(x, y))
bin(Sij(x, y)) ◦ dist(x,y)
bin(Sij(x, y)) ◦ pos(x) ◦ pos(y)
bin(Sij(x, y)) ◦ pos(x) ◦ pos(y) ◦ dist(x,y)

Table 1: All features are binary indicators. x and y are
token indices. Sij is estimated from auto-parsed corpora as
described in the text. The values of S(·, ·) are in the range
(0, 1), which is split by bin into 10 equally-spaced intervals.
dist is the signed and binned sentence-distance between x
and y. pos(x) is the part of speech of token x. ◦ indicates a
concatenation of features.

tractable, the feature function is decomposed into
local feature functions over tree-parts φ(x, part).
The features in φ are standard graph-based depen-
dency parsing features, capturing mostly structural
information from the parse tree.

We extend the scoring function by adding an ad-
ditional term capturing the strength of lexical as-
sociation between head word h and modifier word
m in each dependency arc:
score(x, y) =∑

part∈y

w · φ(x, part) +
∑

(h,m)∈y

assoc(h,m)

The association function assoc is also modeled
as a linear model assoc(h,m) = wlex ·φlex(h,m).
While the weights wlex are trained jointly with w
based on supervised training data, the features in
φlex do not look at h and m directly, but instead
rely on a quantity S(h,m) that reflects the “good-
ness” of the arc (h,m). The quantity S(h,m)
ranges between 0 and 1, and is estimated based
on large quantities of auto-parsed data. Given a
value for S(h,m), φlex is composed of indicator
functions indicating the binned ranges of S(h,m),
possibly conjoined with information such as the
binned surface distance between the tokens h and
m and their parts of speech. The complete spec-
ification of φlex we use is shown in Table 1 (the
meaning of the ij indices will be discussed in Sec-
tion 2.2).

2.1 Estimating S(h,m)

One way of estimating S(h,m), which was also
used in (Chen et al., 2009), is using rank statistics.
LetD be the list of observed (h,m) pairs sorted by
their frequencies, and let rank(h,m) be the index
of the pair (h,m) in D. We now set:

SRANK(h,m) =
rank(h,m)
|D|

While effective, this approach has two related
shortcomings: first, it requires storing counts for
all the pairs (h,m) appearing in the auto-parsed
data, resulting in memory requirement that scales
quadratically with the vocabulary size. Second,
even with very large auto-parsed corpora many
plausible head-modifier pairs are likely to be un-
observed.

An alternative way of estimating S(h,m) that
does not require storing all the observed pairs and
that has a potential of generalizing beyond the
seen examples is using a log-bilinear embedding
model similar to the skip-gram model presented by
Mikolov et al. (2013b) to embed word pairs such
that compatible pairs receive high scores. The
model assigns two disjoint sets of d-dimensional
continuous latent vectors, u and v, where uh ∈ Rd

is an embedding of a head word h, and vm ∈ Rd is
an embedding of a modifier word m. The embed-
ding is done by trying to optimize the following
corpus-wide objective that is maximizing the dot
product of the vectors of observed (h,m) pairs and
minimizing the dot product of vectors of random
h and m pairs. Formally:

∑
h,m∈C

[
ln (σ (uh · vm))−

k∑
i=1

E
mi∼ Pm

ln (σ (uh · vmi))

]

where σ(x) = 1/(1 + e−x), and k is the number
of negative samples, drawn from the corpus-based
Unigram distribution Pm. For further details, see
(Mikolov et al., 2013b; Goldberg and Levy, 2014).
We then take:1

SEMBED(h,m) = σ(uh · vm)

In contrast to the counts based method, this model
is able to estimate the strength of a pair of words
even if the pair did not appear in the corpus due to
sparsity.

Finally, Levy and Goldberg (2014b) show that
the skip-grams with negative-sampling model de-
scribed above achieves its optimal solution when
uh · vm = PMI(h,m)− log k. This gives rise to
another natural way of estimating S:

1The embedding we derive are very similar to the ones de-
scribed in (Levy and Goldberg, 2014a; Bansal et al., 2014),
and which were used by Bansal et al.(2014) for deriving semi-
supervised parsing features. An important difference from
these previous work is that after training, they keep only one
set of vectors (u or v) and ignore the other, basing the fea-
tures on the derived vector representations. In contrast, we
keep both sets of vectors and are interested in the association
measure induced by the dot product uh · vm.
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m−1 m0 m+1 . . . h−1 h0 h+1

the black fox . . . will jump over

Figure 1: Illustration of the bilexical information including
context. When scoring the (incorrect) arc between h0 and
m0, we take into account also the surrounding words h−1,
h+1, m−1 and m+1.

SPMI(h,m) = σ(PMI(h,m)) = p(h,m)
p(h,m)+p(h)p(m)

where p(h,m), p(h) and p(m) are unsmoothed
maximum-likelihood estimates based on the auto-
parsed corpus.

Like SRANK and unlike SEMBED, SPMI requires
storing statistics for all observed word pairs, and
is not able of generalizing beyond (h,m) pairs
seen in the auto-parsed data. However, as we
see in Section 3, this method performing similarly
in practice, suggesting that the generalization ca-
pabilities of the embedding-based method do not
benefit the parsing task.

2.2 Adding additional context

Estimating the association between a pair of words
is effective. However, we would like to go a step
further and take into account also the context in
which these words occur. Specifically, our com-
plete model attempts to estimate the association
between word trigrams centered around the head
and the modifier words.

A naive solution that defines each trigram as
its own vocabulary item will increase the vocab-
ulary size by two orders of magnitude and re-
sult in severe data sparsity. An alternative so-
lution would be to associate each word in the
triplet (h−1, h0, h+1) with its own unique vocab-
ulary item, and likewise for modifier words. In
the embeddings-based model, this results in 6 vec-
tor sets u−1, u0, u+1, v−1, v0, v+1, where v−1

dog, for
example, represents the word “dog” when it ap-
pears to the left of the modifier word, and u+1

walk

the word “walk” when it appears to the right
of the head word.2 This amounts to only a 3-
fold increase in the required vocabulary size. We
then model the strength of association between
h−1h0h+1 and m−1m0m+1 as a weighted sum of

2Sentences are padded by special sentence-boundary
symbols.

pairwise interactions:3

assoc(h−1h0h+1,m−1m0m+1) =
1∑

i=−1

1∑
j=−1

αij associj(hi,mj)

As before, the pairwise association measure
associj(hi,mj) is modeled as a linear model:

associj(hi,mj) = wij
lex · φij

lex(hi,mj)

Where φij
lex is again defined in terms of

a goodness function Sij(x, y). For example,
S−1,+1(the, over) corresponds to the goodness of
a head-modifier arc where the word to the left of
the head word is “the” and the word to the right
of the modifier word is “over”. Sij(hi,mj), the
goodness of the arc induced by the pair (hi,mj),
can be estimated by either SRANK, SEMBED or SPMI
as before. For example, in the embeddings model
we set Sij(x, y) = σ(ui

x · vj
y).

We update the bilexical features to include con-
text as explained above. Instead of learning α
and wlex coefficients separately, we absorb the αij

terms into wlex, learning both at the same time:

assoc(h−1h0h+1,m−1m0m+1) =∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

αij · associj(hi,mj) =

∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

αij · wij
lex · φij

lex(hi,mj) =

∑
i∈{−1,0,1}

∑
j∈{−1,0,1}

w′ijlex · φij
lex(hi,mj)

Finally, the parser selects a dependency tree which
maximizes the following:

w′ · Φ(x, y) =
∑

part∈y

w · φ(x, part)

+
∑

(h,m)∈y

1∑
i=−1

1∑
j=−1

wij
lex · φij

lex(hi,mj)

3In the word embeddings literature, it is common to rep-
resent a word triplet as the sum of the individual component
vectors, resulting in ux,y,z · va,b,c = (u−1

x + u0
y + u+1

z ) ·
(v−1

a + v0
b + v+1

c ). Expanding the terms will result in a very
similar formulation to our proposal, but we allow the extra
flexibility of associating a different strength αij with each
pairwise term.
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Dev Test Brown Answers Blogs Email News Reviews
Baseline 91.97 91.57 86.86 81.58 84.88 79.75 82.59 83.22
Base + Brown 92.16 92.05 87.16 81.96 85.46 80.27 83.02 83.56
Base + HM(SRANK) 92.16 91.74 87.01 82.06 85.36 80.29 82.72 83.62
Base + HM(SEMBED) 92.29 91.98 87.04 81.97 85.34 79.93 82.76 83.33
Base + HM(SPMI) 92.35 92.00 87.14 82.20 85.65 80.34 82.83 83.81
Base + TRIP(SRANK) 92.23 91.91 87.02 82.31 85.59 80.50 83.30 83.79
Base + TRIP(SEMBED) 92.38 92.27 87.15 82.34 85.71 80.41 83.21 83.68
Base + TRIP(SPMI) 92.61 92.32 87.29 82.58 85.88 80.43 83.57 84.18
Base + Brown + TRIP(SRANK) 92.43 92.33 87.23 82.60 85.75 80.57 83.48 84.00
Base + Brown + TRIP(SEMBED) 92.51 92.45 87.33 82.42 86.06 80.44 83.40 83.87
Base + Brown + TRIP(SPMI) 92.70 92.40 87.42 82.74 86.08 80.72 83.78 84.26

Table 2: Parsing accuracies (UAS, excluding puctuation) of the different models on various corpora. All models are trained
on the PTB training set. Dev and Test are sections 22 and 23. Brown is the Brown portion of the PTB. The other columns
correspond to the test portions of the Google Web Treebanks. Automatic POS-tags are assigned in all cases. HM indicates using
assoc(h,m) and TRIP using assoc(h−1h0h1,m−1m0m1). + BROWN indicate using features based on Brown clustering.

3 Experiments and Results

Data Our experiments are based on the Penn
Treebank (PTB) (Marcus et al., 1993) as well as
the Google Web Treebanks (LDC2012T13), cov-
ering both in-domain and out-of-domain scenar-
ios. We use the Stanford-dependencies represen-
tation (de Marneffe and Manning, 2008). All
the constituent-trees are converted to Stanford-
dependencies based on the settings of Version
1.0 of the Universal Treebank (McDonald et al.,
2013).4 These are based on the Stanford Depen-
dencies converter but use some non-default flags,
and change some of the dependency labels. All
of the models are trained on section 2-21 of the
WSJ portion of the PTB. For in-domain data, we
evaluate on sections 22 (Dev) and 23 (Test). All
of the parameter tuning were performed on the
Dev set, and we report test-set numbers only for
the “most interesting” configurations. For out-of-
domain data, we use the Brown portion of the PTB
(Brown), as well as the test-sets of different do-
mains available in the Google Web Treebank: An-
swers, Blogs, Emails, Reviews and Newsgroups.

All trees have automatically assigned part-of-
speech tags, assigned by the TurboTagger POS-
tagger.5 The train-set POS-tags were derived in
a 10-fold jacknifing, and the different test datasets
receive tags from a tagger trained on sections 2-21.

For auto-parsed data, we parse the text of the
BLLIP corpus (Charniak, 2000) using our base-
line parser. This is the same corpus used for deriv-
ing Brown clusters for use as features in (Koo et

4https://github.com/ryanmcd/
uni-dep-tb/raw/master/universal_
treebanks_v1.0.tar.gz

5http://www.ark.cs.cmu.edu/
TurboParser/

al., 2008). We use the clusters provided by Terry
Koo6. Parsing accuracy is measured by unlabeled
attachment score (UAS) excluding punctuations.
Implementation Details We focus on first-order
parsers, as they are the most practical graph-
based parsers in terms of running time in real-
istic parsing scenarios. Our base model is a re-
implementation of a first-order projective Graph-
based parser (McDonald et al., 2005), which we
extend to support the semi-supervised φlex fea-
tures. The parser is trained for 10 iterations
of online-training with passive-aggressive updates
(Crammer et al., 2006). For the Brown-cluster fea-
tures, we use the feature templates described by
(Koo et al., 2008; Bansal et al., 2014).

The embedding vectors are trained using the
freely available word2vecf software7, by con-
joining each word with its relative position (-1, 0
or 1) and treating the head words as “words” and
the modifier words to be “contexts”. The words
are embedded into 300-dimensional vectors. All
code and vectors will be available at the first au-
thor’s website.

Results The results are shown in Table 2. The
second block (HM) compares the baseline parser
to a parser including the assoc(h,m) lexical com-
ponent, using various ways of computing s(h,m).
We observe a clear improvement above the base-
line from using the lexical component across all
domains. The different estimation methods per-
form very similar to each other.

In the third block (TRIP) we switch to the
triplet-based lexical association. With SRANK,

6http://people.csail.mit.edu/maestro/
papers/bllip-clusters.gz

7http://www.bitbucket.org/yoavgo/
word2vecf
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there is very little advantage over looking at just
pairs. However, with SEMBED or SPMI the improve-
ment of using the triplet-based method over using
just the head-modifier pairs is clear. The counting-
based PMI method performs on par with the Em-
bedding based approximation of it.

The second line of the first block (Base+Brown)
represents the current state-of-the-art in semi-
supervised training of graph-based parsing: using
Brown-cluster derived features (Koo et al., 2008;
Bansal et al., 2014). The Brown-derived features
provide similar (sometimes larger) gains to using
our HM method, and substantially smaller gains
than our TRIP method. To the best of our knowl-
edge, we are the first to show a semi-supervised
method that significantly outperforms the use of
Brown-clusters without using Brown-clusters as a
component.

As expected, combining our features and the
Brown-based features provide an additional im-
provement, as can be seen in the last block of Table
2 (Base+Brown+TRIP).

4 Related Work

Semi-supervised approaches to dependency pars-
ing can be roughly categorized into two groups:
those that use unannotated data and those that use
automatically-parsed data. Our proposed method
falls in the second group.

Among the words that use unannotated data, the
dominant approach is to derive either word clus-
ters (Koo et al., 2008) or word vectors (Chen and
Manning, 2014) based on unparsed data, and use
these as additional features for a supervised pars-
ing model. While the word representations used
in such methods are not specifically designed for
the parsing task, they do provide useful features
for parsing, and in particular the method of (Koo
et al., 2008), relying on features derived using the
Brown-clustering algorithm, provides very com-
petitive state-of-the-art results. To the best of our
knowledge, we are the first to show a substantial
improvement over using Brown-clustering derived
features without using Brown-cluster features as a
component.

Among the words that use auto-parsed data, a
dominant approach is self-training (McClosky et
al., 2006), in which a parser A (possibly an en-
semble) is used to parse large amounts of data,
and a parser B is then trained over the union of
the gold data and the auto-parsed data produced

by parser A. In the context of dependency-parsing,
successful uses of self-training require parser A to
be stronger than parser B (Petrov et al., 2010) or
use a selection criteria for training only on high-
quality parses produced by parser A (Sagae and
Tsujii, 2007; Weiss et al., 2015). In contrast, our
work uses the same parser (modulo the feature-set)
for producing the auto-parsed data and for train-
ing the final model, and does not employ a high-
quality parse selection criteria when creating the
auto-parsed corpus. It is possible that high-quality
parse selection can improve our proposed method
even further.

Works that derive features from auto-parsed
data include (Sagae and Gordon, 2009; Bansal et
al., 2014). Such works assign a representation (ei-
ther cluster or vector) for individual word in the
vocabulary based on their syntactic behavior. In
contrast, our learned features are designed to cap-
ture interactions between words. As discussed in
sections (1) and (2), most similar to ours is the
work of (Chen et al., 2009; Van Noord, 2007). We
extend their approach to take into account not only
direct word-word interactions but also the lexical
surroundings in which these interactions occur.

Another recent approach that takes into account
various syntactic interactions was recently intro-
duced by Chen et al. (2014), who propose to learn
to embed complex features that are being used in
a graph-based parser based on other features they
co-occur with in auto-parsed data. Similar to our
approach, the embedded features are then used as
additional features in a conventional graph-based
model. The approaches are to a large extent com-
plementary, and could be combined.

Finally, our work adds additional features to
a graph-based parser which is based on a linear-
model. Recently, progress in dependency parsing
has been made by introducing non-linear, neural-
network based models (Pei et al., 2015; Chen and
Manning, 2014; Weiss et al., 2015; Dyer et al.,
2015; Zhou et al., 2015). Adapting our approach
to work with such models is an interesting research
direction.

5 Conclusions
We presented a semi-supervised method for de-
pendency parsing and demonstrated its effective-
ness on a first-order graph-based parser. Taking
into account not only the (head,modifier) word-
pair but also their immediate surrounding words
add a clear benefit to parsing accuracy.
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