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Abstract

Health literacy enables individuals to navi-
gate healthcare systems and make informed
decisions. Plain language summaries (PLS)
can bridge comprehension gaps by simplify-
ing complex biomedical texts, yet their manual
creation is both time-consuming and challeng-
ing. This study advances the field by (1) con-
structing a novel corpus of paired technical and
plain language texts from medical trial libraries,
(2) developing machine learning classifiers to
rapidly identify plain language features, and
(3) establishing a multi-dimensional evaluation
framework that integrates computational met-
rics with human expertise. We iteratively opti-
mized prompts for diverse large language mod-
els (LLMs)—including GPT models, Gemini
1.5, DeepSeek-R1, and Llama-3.2—to gener-
ate PLS variants aligned with domain-specific
guidelines. Our classifier achieved 97.5% ac-
curacy in distinguishing plain from technical
language, and the generated summaries demon-
strated high semantic equivalence to expert-
written versions.

1 Introduction

Health literacy refers to an individual’s capacity
to access, understand, and use health information
(Nielsen-Bohlman et al., 2004). This ability is
essential for patients and their families to effec-
tively navigate healthcare systems, comprehend
medical instructions, adhere to treatment regimens,
and make informed decisions about clinical trials,
treatments, or procedures (Berkman et al., 2011a,b;
Miller, 2016). However, inadequate health literacy
remains a widespread problem, one that has been
linked to increased mortality, higher rates of pre-
ventable hospitalizations, and poorer treatment ad-
herence (Berkman et al., 2011a). In particular, the
2015 European Health Literacy Survey found that
nearly half of the respondents, particularly older
adults, people with financial constraints, or those

with lower educational attainment, exhibit insuffi-
cient health literacy (Sørensen et al., 2015; Bahador
et al., 2020).

In today’s healthcare landscape, where patient
participation in decision-making is increasingly
critical, improving health literacy is essential to
reduce disparities and improve public health out-
comes (Nielsen-Bohlman et al., 2004; Stormacq
et al., 2019; Schillinger, 2021). Moreover, align-
ing with the transparency principles of the General
Data Protection Regulation (GDPR) (GDPR, 2023;
Trezona et al., 2018), stakeholders are compelled
to ensure that health documentation is both clear
and accessible.

Plain language summaries (PLS) offer a viable
solution by translating complex clinical and scien-
tific texts into accessible language (Bahador et al.,
2020; Centers for Disease Control and Prevention,
2022). However, the manual production of such
summaries is labor-intensive and particularly chal-
lenging in fields dominated by technical terminol-
ogy. While large language models (LLMs) have
demonstrated promise in automating the genera-
tion of lay summaries, previous efforts have largely
centered on text generation, often overlooking the
need for systematically curated training data and
comprehensive evaluation frameworks.

To bridge these gaps, our work introduces a
novel resource and an integrated methodological
framework that addresses key challenges in health
communication. By compiling a corpus of paired
technical and plain language texts from medical
trial libraries, we provide a valuable dataset that un-
derpins the development of machine learning clas-
sifiers capable of rapidly distinguishing between
plain and technical language. Using state-of-the-art
LLMs and iteratively refining our prompts, we gen-
erate plain-language variants that adhere to domain-
specific guidelines. Furthermore, our evaluation
framework, which combines automated metrics
with an expert in health literacy assessments, of-
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fers critical insights into the factors that define an
effective plain-language summary.

Through this integrated approach, our study not
only provides practical tools for producing patient-
centered medical summaries but also enhances our
understanding of the linguistic variables that sup-
port clear and accessible healthcare communica-
tion.

2 Related Work

Recent efforts in biomedical text simplification
have increasingly focused on automatically gen-
erating PLS using NLP and LLMs. Ondov et al.
(2022) reviewed a range of approaches and ob-
served that, although neural methods show promise,
their progress is limited by the scarcity of high-
quality, parallel corpora. This data challenge was
similarly highlighted by Devaraj et al. (2021), who
introduced a new corpus of parallel texts specifi-
cally designed to aid the training of models that
could effectively reduce jargon in biomedical infor-
mation.

LLMs offer a compelling solution to overcome
these limitations due to their extensive training data
and advanced text generation capabilities. For in-
stance, the BioLaySumm contest (Goldsack and
Lin, 2025) targets the task of generating PLS from
abstracts. In the 2023 BioLaySumm Task, Turbitt
et al. (2023) demonstrated that GPT-3.5—when
used in a few-shot setting—produced summaries
with superior relevance and factuality compared to
those of the specialized BioGPT model, despite the
latter’s advantage in readability. Additional stud-
ies (Veen et al., 2024; Mirza et al., 2024) further
indicate that LLMs can outperform human experts
in summarizing clinical texts and enhancing the
clarity of informed consent documents.

However, there remains a critical need for sys-
tematically curated datasets and evaluation frame-
works that combine computational metrics with
human expertise. We aim to enhance existing work
by building a comprehensive database of plain and
technical biomedical texts. We will then imple-
ment advanced LLMs alongside a classification
system to automatically ensure that the generated
summaries are composed in plain language. Addi-
tionally, we will conduct a thorough evaluation of
the generated PLS by domain experts, employing
metrics such as readability, factuality, and accuracy,
as outlined in the BioLaySumm shared task.

3 Materials and Methods

Our methodology, outlined in Figure 1, consisted
of 3 main steps: (1) collecting and processing of
sample texts in technical and plain language, (2)
conducting a quantitative analysis of the plain and
technical texts to generate a plain language clas-
sification model and a qualitative analysis of the
texts to generate the prompts for the LLMs, and
(3) assessing the use of the LLMs to generate PLS
from technical texts.

3.1 Data Collection and Processing
We collected biomedical texts in both technical and
plain language (see Table A1 for data sources) and
assembled them into a dataset comprising 14,441
texts. This “main dataset” was then divided into
training and testing sets, containing 4,596 plain and
6,721 technical texts for training, and 1,149 plain
and 1,975 technical texts for testing.

We further enlarged the dataset by treating each
paragraph of at least 250 words as a distinct unit,
while excluding texts shorter than 250 words. As a
result, our "augmented dataset" contained 61,354
texts, split into 16,731 plain and 31,740 technical
texts for training, and 5,090 plain and 7,793 techni-
cal texts for testing. To mitigate source imbalance,
we limited the dataset to 23,695 texts, divided into
9,093 plain and 8,654 technical for training, and
2,741 plain and 3,205 technical for testing. Ad-
ditionally, we obtained a validation set of PLOS
and eLife texts from (Goldsack et al., 2022; Luo
et al., 2022) to evaluate the ML models on a dataset
external to our own.

3.2 Analysis of Plain Language
We conducted qualitative and quantitative analyses
of the texts to identify unique linguistic traits and
variables that classify a text as plain language.

3.2.1 Qualitative Analysis
Driven by the varying and broad-scope guidance
on creating high-quality PLS (Stoll et al., 2022),
we analyzed a subset of our plain texts and created
a ’criteria checklist’ (see Table 1) with the linguis-
tic attributes most commonly present in plain texts.
Key resources used in this process were guides and
reviews, such as Your Guide to CLEAR WRITING
by CDC (Centers for Disease Control and Preven-
tion, 2022), Federal Plain Language Guidelines
(The Plain Language Action and Information Net-
work, 2011), Health Literacy Universal Precautions
Toolkit by Agency for Healthcare Research and
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Figure 1: Methodology. Our methodology consists of three main steps: (1) collecting and processing biomedical
texts (technical and plain language documents) to construct training and testing datasets, (2) conducting quan-
titative analysis to develop a plain language classification model and qualitative analysis to identify linguistic
traits guiding prompt engineering for LLM-based PLS generation, and (3) evaluating LLM-generated PLS both
quantitatively—using our classification model, semantic equivalence/relevance (BERTScore, Zhang et al. (2020)),
factuality (AlignScore, Zha et al. (2023)), and readability metrics—and qualitatively through expert assessments.

Quality (AHRQ) (Brach, 2023), Just Plain Clear
Glossary by United Health Group (United Health
Group, 2023), EU 536/2014 Summary of Clinical
Results for Laypersons (European Union, 2023),
and results presented by Stoll et al, in their sys-
tematic review of theory, guidelines, and empirical
research on PLS (Stoll et al., 2022). We used the
resultant checklist to complement the qualitative
findings described in the next section and aid in
developing the prompt detailed in the section LLM
Prompt for Plain Language Summary Generation.

3.2.2 Quantitative Analysis
We computed readability metrics and language vari-
ables for each text in the augmented dataset using
the Readability (2019) and SpaCy (2023) libraries,
respectively. This resulted in 64 variables present-
ing each text’s readability and linguistic traits (see
Table B1 and Section B).

For each language variable characteristic k, we
evaluated its discriminative potential for classifying
texts as either technical or plain. To this end, we
randomly selected a sample of size n from the plain
texts, denoted by

X
(k)
1 , X

(k)
2 , . . . , X(k)

n ∼ P
(k)
X ,

and a corresponding sample of size n from the

technical texts, denoted by

Y
(k)
1 , Y

(k)
2 , . . . , Y (k)

n ∼ Q
(k)
Y .

An independent hypothesis test was then conducted
for each k to determine whether the distributions
differ statistically between the two text types.

Specifically, for each linguistic feature k, we
considered the following hypotheses:

• Null Hypothesis (H(k)
0 ): P (k)

X = Q
(k)
Y . The

distributions of the characteristic k for plain
and technical texts are identical.

• Alternative Hypothesis (H(k)
1 ): P

(k)
X ̸=

Q
(k)
Y . The distributions of the characteristic k

for plain and technical texts differ.

To evaluate these hypotheses, we employed
several non-parametric tests, namely the
Wilcoxon signed-rank test (Wilcoxon, 1945),
the Kolmogorov-Smirnov test (Kolmogorov,
1933), and the Mann–Whitney U test (Mann
and Whitney, 1947), ensuring robustness across
different statistical assumptions. Since a total of
64 independent hypothesis tests were performed
(one for each characteristic k), a Bonferroni
correction (Benjamini and Hochberg, 1995) was
applied to control the family-wise error rate. Thus,
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Linguistic Attributes PLS Characteristics

• Use simple and everyday words. Avoid technical,
medical, or scientific terms, jargon, or complex
terminology (e.g., explain technical terms such as
copayment, electrocardiogram, pyrexia, screening,
double-blind).

• Readability level 6 or below

• Active voice over passive voice

• Mostly 1-2 syllable words

• Sentences of less than 20 words

• Short paragraphs of 3-5 sentences

• Simple numbers that do not require any math (e.g.,
4 out of every 10 community members, not 40%
of community members)

• Approximate length of 700-900 words

• Specific structure and content by domain (e.g., EU-
CTR suggested a specific structure and content for
lay protocol synopsis)

Table 1: PLS Criteria Checklist of linguistic attributes and characteristics as defined by qualitative analysis of
sample texts and Plain Language guidelines frequently used by domain experts.

the nominal significance level of α = 0.05 was
adjusted to α′ = 0.05

64 ≈ 0.0008.
Figure 2 illustrates examples of the distribution

comparisons for selected characteristics. Notably,
of the 64 characteristics examined, only ‘Interjec-
tions’ and ‘Passive Voice’ did not provide sufficient
evidence to reject the null hypothesis (i.e., their p-
values exceeded 0.0008), whereas the remaining 62
characteristics exhibited statistically significant dif-
ferences and were subsequently incorporated into
our classification model.

3.3 Plain Texts Classification Model

We used the reduction of the augmented dataset and
first preprocessed the 62 linguistic variables by ap-
plying standard min-max normalization. For vari-
ables representing counts of specific word types,
normalization was performed relative to the total
number of words in the text. We then built our
models using the processed features.

For the Gradient Boosting (GB) model, we man-
ually set the parameters as follows: the number
of estimators was fixed at 120 (i.e., the number of
boosting stages), the learning rate was set to 0.25
to scale the contribution of each tree, a subsample
rate of 0.8 was used to fit each base learner on 80%
of the training instances, the maximum depth of
each tree was limited to 5 to minimize overfitting,
a minimum of 5 samples was required to split an
internal node, and at least 3 samples were needed
in a leaf node. A fixed random state (0) ensured

reproducibility.
For the Random Forest (RF) model, we config-

ured 100 estimators (trees) with a maximum tree
depth of 10 and also set the random state to 0.

Note that we did not perform automated hyper-
parameter tuning (e.g., using grid search) or use
K-fold cross-validation to select optimal training
and testing splits; instead, the parameters were ad-
justed manually through trial and error, given the
rapid training times observed.

3.4 LLM Prompt for Plain Language
Summary Generation

Our objective was to design a prompt for LLMs
capable of translating biomedical technical docu-
ments into plain language summaries (PLS). Be-
ginning with a clinical trial protocol from Clini-
calTrials.gov (see data sources in Table A1), we
used an initial simple prompt: “Using the follow-
ing clinical trial protocol text as input, create a
plain language summary.” We tested this prompt
using both GPT-3.5 and GPT-4, analyzed the gen-
erated outputs, and iteratively refined the prompt
by adding further details and instructions.

We aimed to produce a PLS that met the follow-
ing qualitative criteria: (1) Accuracy: the content
is clinically and scientifically correct; (2) Read-
ability: the text is grammatically correct and easily
understood by a lay audience (as defined in Ta-
ble 1); (3) Completeness: the summary adheres to
the expectations of a Protocol Plain Language Sum-
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a. Interjections. These are words or phrases used
to express a feeling (e.g., Wow! or Uh-oh). It is
uncommon in biomedical settings and is not present
in either our technical or plain texts.

b. Passive Voice: when the subject undergoes the
action of the verb (e.g., ‘The cells were counted by
the scientist’). According to our qualitative analysis,
the use of passive voice can make sentences more
complex, less direct, and harder to understand. As
evidenced in our quantitative analysis, it is avoided
in both scientific/biomedical settings, both in plain
and technical texts.

c. Stopwords. The proportion of words such as
‘a’ and ‘the’ is higher in plain texts is higher in
plain texts, most likely as they aid in the fluency
and comprehension of a text by acting as connec-
tors between words, enhancing the coherence and
naturalness of sentences for readers.

d. Complex Words. The proportion of words
with three or more syllables is higher in technical
texts, consistent with our qualitative assessments
and plain language guidelines.

Figure 2: Comparison of the distribution of a sample of readability metrics or language variables between plain and
technical texts.

mary (PPLS) as specified by EU CTR No 536/2014
(United Health Group, 2023); and (4) Usefulness:
the generated PLS can serve as a reliable first draft
for final study documentation.

Because PPLS are intended for review by pro-
fessional evaluators, they required a higher level
of care and were generated in limited numbers.
This qualitative evaluation method, although rigor-
ous, did not scale efficiently to large sample sizes.
To address this limitation, for the more numerous
Cochrane Review PLS we adopted a scalable, quan-
titative evaluation approach based on the three cri-
teria used in the BioLaySumm competition (Gold-
sack and Lin, 2025). Specifically, we assessed:

1. RELEVANCE: measuring the semantic simi-
larity between the LLM-generated summaries
and a ground-truth summary (created by a hu-
man) using BERTScore (Zhang et al., 2020);

2. FACTUALITY: evaluating the consistency of
the generated content with the source text (i.e.,
ensuring that no contradictory information
is introduced) using AlignScore (Zha et al.,
2023); and

3. READABILITY: assessing grammaticality
and ease of comprehension through computa-
tional metrics such as Flesch–Kincaid Grade
Level (Flesch, 1948), Coleman-Liau Index
(Coleman and Liau, 1975), Flesch Reading
Ease, Gunning Fog Index (Gunning, 1952),
SMOG readability formula, and Dale–Chall
Readability Score (Chall and Dale, 1995).

In addition, we considered the CLASSIFICATION

results from our best ML model, which predicts if
the LLM-generated text is plain or technical.

Our final prompt (see Figure C2) for generating
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a PPLS included the following elements:

• Context: a clear explanation of why a plain
language summary is needed for the given
clinical trial protocol.

• Output: the desired structure and format of
the generated summary, including specific sec-
tions.

• Content: guidelines on the expected informa-
tion in each section, with examples and rules
to direct the generation process.

• Restrictions: limitations on the output (e.g.,
word count, inclusion of only information pro-
vided in the original protocol, and adherence
to the plain language criteria outlined in Ta-
ble 1).

After finalizing the prompt for generating a
PPLS, we used a similar approach to create a
prompt for generating Cochrane Review PLS (see
Table A1 and Figure C1). This two-pronged strat-
egy allowed us to balance the need for careful, qual-
itative review (for PPLS) with a scalable, quanti-
tative evaluation method (for Cochrane PLS) that
can handle larger sample sizes.

4 Results

4.1 Plain Texts Classification Model

The classification models accurately distinguished
between plain and technical texts. The GB model,
in particular, achieved a slightly higher F1 Score
(see Table 2). Since most of the training data were
derived from Cochrane texts, we further evaluated
the models on a completely separate validation set
composed of PLOS and eLife documents (see Ta-
ble A1) to assess potential bias. The performance
metrics, reported as Main/PLOS+eLife in Table 2,
indicate that the models generalize well to unseen
data and exhibit minimal bias.

Metric Main (Test) PLOS + eLife (Test)
RF GB RF GB

Accuracy 0.968 0.9752 0.9421 0.9557
Recall 0.973 0.9813 0.9616 0.9672
Precision 0.959 0.9655 0.9255 0.9455
F1 Score 0.966 0.9734 0.9432 0.9562

Table 2: Performance comparison of classification mod-
els on the Main Dataset and the PLOS + eLife test
dataset.

4.2 LLM Prompt for Plain Language
Summary Generation

4.2.1 Cochrane Reviews: Plain Language
Summaries

We randomly selected 600 Cochrane texts from
the main dataset—300 technical abstracts and their
corresponding plain language summaries (ground
truth). Using our final prompt, we generated sum-
maries for the technical abstracts and computed
average metrics—READABILITY, FACTUALITY,
and RELEVANCE—for each model (Table 3). The
factuality metric was calculated using the origi-
nal abstracts to ensure the summaries remained
faithful. We also evaluated classification accuracy
(i.e., whether our ML classifier recognized the sum-
maries as plain language) as shown in Table 4.

Overall, API-based models produced summaries
consistently classified as plain language, while lo-
cally executed models tended to yield more techni-
cal outputs, as indicated by lower readability scores.
Among the GPT models, those with higher read-
ability were more often recognized as plain lan-
guage, although their factuality and relevance were
slightly lower than those of GPT-3.5. These results
suggest that some models generate easier-to-read
texts, whereas others retain a more technical tone.

4.2.2 Protocol Plain Language Summaries

We randomly selected a sample of nine clinical
trial protocols from ClinicalTrials.gov. Since the
corresponding PPLS were not publicly available,
we used Trial Summaries by Citeline Regulatory
to obtain the Results Plain Language Summaries
(RPLS) and extracted four sections equivalent to a
PPLS: ‘Why is this study needed?’ (Background
and hypothesis of the trial, i.e., Rationale), ‘Who
will take part in this study?’ (Population), ‘How
is this study designed?’ (Trial Design), and ‘What
treatments are being given during the study?’ (In-
terventions).

Quantitative Analysis

We generated PPLS from technical protocols using
our prompt with both API-based models (e.g., GPT-
3.5, GPT-4, GPT-4o, Gemini-1.5) and locally exe-
cuted models (DeepSeek R1, Llama-3.2). For each
model, we computed average metrics for READ-
ABILITY, FACTUALITY (AlignScore), and RELE-
VANCE (BERTScore), as shown in Table 3. Our
ML classifier also confirmed that nearly all outputs
were recognized as plain language (see Table 4).
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Quantitative Evaluation for Cochrane
READABILITY FACTUALITY RELEVANCE

Model CLI ↓ FRE ↑ GFI ↓ SMOG ↓ FKGL ↓ DCRS ↓ AlignScore ↑ BERTScore ↑
deepseek-r1-7b 16.99 22.75 17.69 12.31 14.80 9.45 0.7955 0.8496
gemini-1.3-flash 9.60 66.87 8.75 9.08 6.90 5.94 0.6333 0.8474
gpt_4-32k 12.48 48.52 13.39 11.20 10.80 7.41 0.7801 0.8519
gpt_4o 11.49 57.13 11.16 9.91 9.09 6.88 0.7383 0.8527
gpt_35-turbo-16k 15.52 28.08 17.33 12.59 13.91 8.60 0.8781 0.8585
llama-3.2-3b 16.42 21.96 18.58 10.79 15.73 9.39 0.8785 0.8490

Quantitative Evaluation for PPLS
READABILITY FACTUALITY RELEVANCE

Model CLI ↓ FRE ↑ GFI ↓ SMOG ↓ FKGL ↓ DCRS ↓ AlignScore ↑ BERTScore ↑
deepseek-r1-7b 15.70 24.73 15.03 11.88 13.89 9.88 0.9657 0.8305
gemini-1.3-flash 9.11 65.09 8.61 11.40 6.74 5.75 0.9331 0.8479
gpt_4-32k 10.86 52.26 12.15 10.45 10.79 6.86 0.9646 0.8472
gpt_4o 11.20 55.67 10.37 10.97 8.91 7.05 0.9515 0.8465
gpt_35-turbo-16k 14.30 29.10 16.07 13.49 13.68 8.15 0.9697 0.8434
llama-3.2-3b 13.54 35.17 14.75 11.72 13.26 8.47 0.9826 0.8386

Table 3: Comparison of model metrics. Upper table: Metrics computed as averages from generated summaries
derived from 300 Cochrane abstracts. Lower table: Metrics computed as averages over the 9 generated PPLS
produced by the LLMs. Best values are in bold and worst values are underlined. READABILITY metrics are
lower-is-better (except FRE, where higher is preferred), while FACTUALITY and RELEVANCE are higher-is-better.

CLASSIFICATION
Model Cochrane PPLS
deepseek-r1-7b 0.5567 0.5556
gemini-1.3-flash 1.0000 1.0000
gpt_4 0.9433 1.0000
gpt_4o 0.9767 1.0000
gpt_35 0.8733 1.0000
llama-3.2-3b 0.7033 0.7778

Table 4: Accuracy of generated summaries as deter-
mined by our plain language classifier. Since all outputs
should be plain language by instruction, these results
indicate the extent to which each model adheres to this
requirement.

Overall, API-based models achieved higher preci-
sion and better factuality, while locally executed
models performed worse due to computational lim-
itations. Among the GPT models, GPT-4 and GPT-
4o produced the most readable summaries (and
were most frequently classified as plain language),
though their factuality and relevance were slightly
lower than those of GPT-3.5. These results indicate
that models like GPT-4o, Gemini-1.5, and GPT-
4 tend to generate easier-to-read texts, whereas
DeepSeek R1 and Llama-3.2 yield more technical
summaries.

Qualitative Analysis
For the qualitative evaluation, only the plain lan-
guage summaries generated by GPT-3.5 and GPT-4
were selected. Due to time constraints for experts,
we selected only the best models based on previ-
ous results, considering that GPT-4o has minimal

differences from GPT-4 in content generation. Rat-
ings by three domain experts who evaluated each
LLM-generated text demonstrated that GPT-4 out-
performed GPT-3.5 in all four criteria: Accuracy,
Readability, Completeness, and Usefulness, as indi-
cated by an average overall score of 4.71 for GPT-4
texts compared to 3.93 for GPT-3.5 (see Figure 3
and Table 5).

Figure 3: Radar diagram comparing the qualitative as-
sessment of the LLM-generated texts in four criteria:
Accuracy, Readability, Completeness, and Usefulness.

In terms of accuracy, both GPT-3.5 and GPT-4
received high scores. Reviewers noted that both
language models exhibited scientific accuracy and
relied exclusively on the input text (study proto-
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col). Notably, even when the content in the origi-
nal RPLS contained inconsistencies (e.g., an incor-
rect age limit or indication), both language models
generated accurate PLS. This finding suggests that
language models can be used to automatically gen-
erate a first draft of a PLS while minimizing data
inaccuracies resulting from human error.

Metric GPT 3.5 GPT 4
Accuracy 4.52 4.81
Readability 3.59 4.44
Completeness 3.96 4.81
Usefulness 3.63 4.78
Overall Score 3.93 4.71

Table 5: Ratings for GPT 3.5 and GPT 4 plain language
summaries in four criteria: Accuracy, Readability, Com-
pleteness, and Usefulness.

5 Discussion

In this study, we used NLP and LLMs to improve
health literacy by generating PLS from biomed-
ical texts. Our approach involved building a ro-
bust database that generalizes well across diverse
sources and developing a highly accurate classi-
fication model to distinguish technical from plain
texts. This model serves as a valuable tool for ensur-
ing that patient-targeted documents adhere to plain
language guidelines, while our LLM-based genera-
tion framework leverages well-designed, domain-
specific prompts to produce PLS.

Our evaluation shows that API-based models
generally generate easier-to-read and more semanti-
cally faithful summaries, although they sometimes
exhibit slightly lower factuality—possibly due to
hallucination issues. In contrast, locally executed
models, while maintaining acceptable factual ac-
curacy, tend to yield more technical outputs, most
probably because they have difficulty understand-
ing instructions better, due to computational limi-
tations. Qualitative feedback from domain experts
confirmed that GPT 4 outperformed GPT 3.5 in
terms of accuracy, readability, completeness, and
usefulness. These findings highlight the value of
using well-designed, domain-specific prompts and
robust LLMs to streamline the generation of plain
language summaries. Future research should ex-
plore the use of fully-featured, open-source models
comparable to the API-based alternatives and in-
corporate broader stakeholder feedback to refine
these methods for diverse biomedical domains.

In conclusion, by leveraging the capabilities of
NLP and LLMs, our framework represents a signif-

icant step towards bridging the gap between com-
plex biomedical texts and comprehensible sum-
maries for the general audience, paving the way
for innovations in health literacy.

6 Future Work

We plan to expand and diversify our dataset by in-
corporating the full collections of PLOS and eLife,
obtaining more plain language samples, and em-
ploying advanced techniques to better separate and
curate the data.

Future evaluations should include a larger and
more diverse set of documents as well as input from
multiple stakeholder groups (e.g., patients, medi-
cal writers, and clinicians). Additionally, further
research should explore advanced prompt engineer-
ing techniques, such as chain-of-thought strategies,
particularly for open-source models.

7 Limitations

Our study has some limitations. First, our dataset
is predominantly composed of Cochrane texts with
very few samples from other sources (e.g., Pfizer),
which may lead to overfitting and reduce gener-
alizability. Additionally, the current database is
not human-curated, which may introduce parsing
errors or inaccuracies. Second, our qualitative as-
sessment was based on a limited number of clini-
cal protocols and evaluated only the outputs from
GPT-3.5 and GPT-4, with feedback from just a
few domain experts. Furthermore, due to compu-
tational and API cost constraints, the number of
generated samples was limited, potentially affect-
ing the statistical significance of our findings and
complicating comparisons between API-based and
locally executed models.
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A Supplemental Material

Data Source Text Type Overview Count of Texts Extraction Method

U.S National
Library of
Medicine (NIH),
ClinicalTri-
als.gov

Technical

Largest and publicly available
database of clinical research
studies and information about
their results (U.S National
Library of Medicine (NIH),
2023a).

100

ClinicalTrials.gov API that pro-
vides access to all posted infor-
mation on study records (U.S
National Library of Medicine
(NIH), 2023b).

Cochrane Library
by Wiley

Technical
and Plain

International not-for-profit
organization that publishes
trusted reviews of biomedical
research in two formats: a
technical abstract and a plain
language summary.

8465 projects
(13,922 texts)
(*shorter than
250 excluded)

Python libraries: Selenium
(2023) (for automated browser
interactions) and Beautiful
Soup (2023) (for web scrap-
ing).

Pfizer Results
Plain Language
Summaries

Plain

Plain Language Study Results
Summaries (RPLS) of Pfizer
clinical studies (Pfizer, 2023).
Sections containing tables or di-
agrams were excluded.

125

Specific sections of the PDF
documents were mapped and
extracted (e.g., “What hap-
pened during the Study?”).

Trial Summaries
by Citeline Regu-
latory

Plain

Trial results summaries (RPLS)
for studies that started in late
2015 and beyond, provided
by sponsors (e.g., AstraZeneca,
GSK, Amgen) (Pharma Intelli-
gence UK Limited, 2023).

294

Automatic PDF extraction in-
troduced errors (missing letters,
broken words). GPT-3.5 API
was used only to correct these
errors, ensuring texts matched
the original RPLS PDFs.

PLOS + eLife
(Luo et al., 2022;
Goldsack et al.,
2022; Goldsack
and Lin, 2025)

Technical
and Plain

Dataset from the BioLaySumm
competition containing biomed-
ical and life sciences article
summaries. We only used the
validation sets.

1376 (PLOS)
241 (eLife)

Official data published by Gold-
sack and Lin (2025)

Table A1: Overview of the data sources used in this study. All texts are available in our GitHub Data Repository1.

1https://github.com/feliperussi/bridging-the-gap-in-health-literacy/tree/main/data_collection_and_
processing/Data%20Sources
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B Linguistic Features and Readability
Indexes

In this study, the readability indexes (items 1–9)
were computed using formulas based on variables
from Readability (2019), while the linguistic fea-
tures (items 10–49) were extracted using SpaCy
(2023) (model en_core_web_sm). The remaining
readability features (items 50–62) were obtained
with the Readability library. Below is an enu-
merated list and for a concise overview, Table B1
presents the same variables along with their enu-
meration.

1. Flesch-Kincaid Grade Level (FKGL): Esti-
mates the U.S. school grade level needed to
comprehend the text (Flesch, 1948; Kincaid
et al., 1975).

2. Automated Readability Index (ARI): Com-
putes readability using characters, words, and
sentences (Senter and Smith, 1967).

3. Coleman-Liau Index (CLI): Measures read-
ability based on letter and word counts per
sentence (Coleman and Liau, 1975).

4. Flesch Reading Ease (FRE): Produces a
score where higher values indicate easier read-
ability (Flesch, 1948; Kincaid et al., 1975).

5. Gunning Fog Index (GFI): Estimates the
number of years of formal education needed
to understand the text (Gunning, 1952).

6. LIX: Calculates readability by analyzing the
proportion of long words in the text (Ander-
son, 1983).

7. SMOG readability formula (SMOGIndex):
Estimates readability by counting polysyllabic
(Mc Laughlin, 1969).

8. RIX: Computes readability from the number
of long words per sentence (Anderson, 1983).

9. Dale-Chall Readability Score (DCRS): As-
sesses readability by comparing text words
against a list of familiar words (Chall and
Dale, 1995).

10. total_words: Total number of words in the
text (excluding punctuation), identified by
spaCy. e.g., in “Hello, world!”, there are 2
words.

11. total_sentences: Total number of sentences
in the text, based on spaCy’s sentence seg-
mentation. e.g., “Hello. World!” yields 2
sentences.

12. total_characters: Total number of characters
in the text. e.g., “Hello” has 5 characters.

13. passive_voice: Frequency of passive voice
constructions, determined via verb forms
tagged as VBN. e.g., “was given” in “John
was given a book by Mary.”

14. active_voice: Frequency of active voice con-
structions, counted as verbs (VERB) not
tagged as VBN. e.g., “ran” in “Alice quickly
ran to the store,” or “decided” in “He decided
to give up his job.”

15. passive_toks: Count of tokens in passive con-
structions, where spaCy marks passive sub-
jects with nsubjpass. e.g., “John” in “John
was given a book by Mary.”

16. active_toks: Count of tokens in active con-
structions, based on the nsubj dependency;
e.g., “Alice” in “Alice quickly ran to the
store.”

17. verbs: Count of verbs in the text, determined
by tokens with the part-of-speech VERB; e.g.,
“bought” in “Alice bought 3 apples.”

18. nouns: Count of nouns in the text, determined
by tokens with the part-of-speech NOUN; e.g.,
“book” in “John was given a book.”

19. adjectives: Count of adjectives in the text,
determined by tokens with the part-of-speech
ADJ; e.g., “incredible” in “That was incredi-
ble.”

20. adverbs: Count of adverbs in the text, de-
termined by tokens with the part-of-speech
ADV; e.g., “quickly” in “Alice quickly ran to
the store.”

21. prepositions: Count of prepositions in the
text, determined by tokens with the part-
of-speech ADP; e.g., “by” in “the ball was
thrown by him.”

22. auxiliaries: Count of auxiliary verbs in the
text, determined by tokens with the part-of-
speech AUX; e.g., “was” in “John was given
a book by Mary.”

280



Readability Indexes (1) FKGL, (2) ARI, (3) CLI, (4) FRE, (5) GFI, (6) LIX, (7) SMOGIndex,
(8) RIX, (9) DCRS

Linguistic Characteristics (10) total_words, (11) total_sentences, (12) total_characters, (13) pas-
sive_voice, (14) active_voice, (15) passive_toks, (16) active_toks, (17)
verbs, (18) nouns, (19) adjectives, (20) adverbs, (21) prepositions, (22)
auxiliaries, (23) conjunctions, (24) coord_conjunctions, (25) determin-
ers, (26) numbers, (27) particles, (28) pronouns, (29) proper_nouns, (30)
punctuations, (31) subordinating_conjunctions, (32) symbols, (33) other,
(34) persons, (35) norp, (36) facilities, (37) organizations, (38) gpe, (39)
products, (40) works, (41) dates, (42) times, (43) quantities, (44) ordinals,
(45) cardinals, (46) percentages, (47) locations, (48) laws, (49) stopwords
(50) characters_per_word, (51) syll_per_word, (52) words_per_sentence,
(53) sentences_per_paragraph, (54) type_token_ratio, (55) syllables,
(56) paragraphs, (57) long_words, (58) complex_words, (59) com-
plex_words_dc, (60) tobeverb, (61) auxverb, (62) nominalization

Table B1: Variables used to describe the readability and linguistic characteristics of the texts. Items 1–9 (readability
indexes) were computed using formulas based on variables from Readability (2019), items 10–49 (linguistic features)
were extracted using SpaCy (2023) (model en_core_web_sm), and items 50–62 were obtained using Readability
(2019).

23. conjunctions: Count of conjunctions in the
text, determined by tokens tagged as CCONJ
or SCONJ; e.g., “because” and “and” in “Alice
quickly ran to the store and bought 3 apples
because it was late.”

24. coord_conjunctions: Count of coordinating
conjunctions, determined by tokens with the
part-of-speech CCONJ; e.g., “and” in the ex-
ample of conjunctions.

25. determiners: Count of determiners in the
text, determined by tokens with the part-of-
speech DET; e.g., “the” in “the qwerty word
is unknown.”

26. numbers: Count of numerical values in the
text, determined by tokens with the part-of-
speech NUM; e.g., “3” in “Alice bought 3
apples.”

27. particles: Count of particles in the text, de-
termined by tokens with the part-of-speech
PART; e.g., “to” in “He decided to give up his
job.”

28. pronouns: Count of pronouns in the text, de-
termined by tokens with the part-of-speech
PRON; e.g., “him” in “the ball was thrown by
him.”

29. proper_nouns: Count of proper nouns in the
text, determined by tokens with the part-of-
speech PROPN; e.g., “Google” or “JFK Air-
port.”

30. punctuations: Count of punctuation marks in
the text, determined by tokens with the part-of-
speech PUNCT; e.g., “,” in “John was given a
book, and the ball was thrown by him.”

31. subordinating_conjunctions: Count of sub-
ordinating conjunctions in the text, deter-
mined by tokens with the part-of-speech
SCONJ; e.g., “because” in the example of
conjunctions.

32. symbols: Count of symbols in the text, de-
termined by tokens with the part-of-speech
SYM; e.g., “$” in “worth $100,000.”

33. other: Count of tokens not classified in other
categories, determined by tokens with the part-
of-speech X (uncategorized).

34. persons: Count of person mentions in the text,
determined by entities labeled PERSON; e.g.,
“John” or “Mary.”

35. norp: Count of references to nationalities,
religious or political groups, determined by
entities labeled NORP; e.g., “American.”

36. facilities: Count of facilities (e.g., buildings,
airports, roads), determined by entities labeled
FAC; e.g., “JFK” and ‘Airport” in “JFK Air-
port.”

37. organizations: Count of organizations, deter-
mined by entities labeled ORG; e.g., “FAA”
or “Google.”
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38. gpe: Count of geopolitical entities (countries,
cities), determined by entities labeled GPE;
e.g., “London.”

39. products: Count of products mentioned, de-
termined by entities labeled PRODUCT.

40. works: Count of creative works (e.g., art,
books, movies), determined by entities labeled
WORK_OF_ART; e.g., “Hamlet.”

41. dates: Count of dates mentioned, determined
by entities labeled DATE; e.g., “March”, “15”,
“,” and “2025” in “March 15, 2025.”

42. times: Count of time expressions, determined
by entities labeled TIME; e.g., “3:00” and
“PM” in “3:00 PM.”

43. quantities: Count of quantity expressions,
determined by entities labeled QUANTITY;
e.g., “10” and “kg.” in “10 kg.”

44. ordinals: Count of ordinal numbers, deter-
mined by entities labeled ORDINAL; e.g.,
“first” in “She is the first in its field.”

45. cardinals: Count of cardinal numbers, deter-
mined by entities labeled CARDINAL; e.g.,
“3” in “Alice bought 3 apples.”

46. percentages: Count of percentage expres-
sions, determined by entities labeled PER-
CENT; e.g., “50” and “%” in “yield 50% dis-
counts.”

47. locations: Count of location mentions, deter-
mined by entities labeled LOC; e.g., “Alps” in
“The Alps are breathtaking.”

48. laws: Count of laws mentioned, determined
by entities labeled LAW; e.g., “Section” and
“2” in “Section 2 of the law applies to this
case.”

49. stopwords: Count of stopwords in the text,
determined by tokens identified as stop words
by spaCy; e.g., “was,” “the,” or “and.”

50. characters_per_word: Average number of
characters per word, computed as total char-
acters divided by total words.

51. syll_per_word: Average number of syllables
per word, computed as total syllables divided
by total words.

52. words_per_sentence: Average number of
words per sentence, computed as total words
divided by total sentences.

53. sentences_per_paragraph: Average number
of sentences per paragraph, computed as total
sentences divided by total paragraphs.

54. type_token_ratio: Ratio of unique words to
total words, computed as the number of dis-
tinct tokens divided by total words.

55. syllables: Total number of syllables in the
text.

56. paragraphs: Total number of paragraphs in
the text.

57. long_words: Count of long words in the text,
defined as words exceeding a specified length
threshold (e.g., more than 7 letters).

58. complex_words: Count of complex words in
the text, defined as words with three or more
syllables (e.g., “inconceivable”), indicating
text complexity.

59. complex_words_dc: Count of complex
words according to the Dale–Chall method
(i.e., unknown polysyllabic words from a list
of basic words).

60. tobeverb: Count of occurrences of the verb
“to be” in the text (e.g., “is,” “are,” “was”).

61. auxverb: Count of auxiliary verbs in the text
(e.g., “have,” “will,” “do”).

62. nominalization: Count of nominalizations
in the text, i.e., instances where verbs, adjec-
tives, or other linguistic elements are trans-
formed into nouns (e.g., “development” from
“develop”).
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C Prompts

Using the following abstract of a biomedical study as input, generate a Plain Language Summary
(PLS) understandable by any patient, regardless of their health literacy. Ensure that the generated text
adheres to the following instructions which should be followed step-by-step:
a. Specific Structure: The generated PLS should be presented in a logical order, using the following
order:

1. Plain Title

2. Rationale

3. Trial Design

4. Results

b. Sections should be authored following these parameters:

1. Plain Title: Simplified title understandable to a layperson that summarizes the research that was
done.

2. Rationale: Include: background or study rationale providing a general description of the
condition, what it may cause or why it is a burden for the patients; the reason and main hypothesis
for the study; and why the study is needed, and why the study medication has the potential to
treat the condition.

3. Trial Design: Answer ‘How is this study designed?’ Include the description of the design,
description of study and patient population (age, health condition, gender), and the expected
amount of time a person will be in the study.

4. Results: Answer ‘What were the main results of the study’, include the benefits for the patients,
how the study was relevant for the area of study, and the conclusions from the investigator.

c. Consistency and Replicability: The generated PLS should be consistent regardless of the order of
sentences or the specific phrasing used in the input protocol text.
d. Compliance with Plain Language Guidelines: The generated PLS must follow all these plain
language guidelines:

• Have readability grade level of 6 or below.

• Do not have jargon. All technical or medical words or terms should be defined or broken down
into simple and logical explanations.

• Active voice, not passive.

• Mostly one or two syllable words.

• Sentences of 15 words or less.

• Short paragraphs of 3-5 sentences.

• Simple numbers (e.g., ratios, no percentages).

e. Do not invent Content: The AI model should not invent information. If the AI model includes data
other than the one given in the input abstract, the AI model should guarantee such data is verified and
real.
f. Aim for an approximate PLS length of 500-900 words.

Figure C1: Prompt to translate Cochrane technical abstract into a plain language summary.
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Using the following abstract of a biomedical study as input, generate a Plain Language Summary (PLS)
understandable by any patient, regardless of their health literacy. Ensure that the generated text adheres to the
following instructions which should be followed step-by-step:

a. Specific Structure: The generated PPLS should be presented in a logical order, using the following headings:

1. Plain Protocol Title

2. Rationale

3. Objectives

4. Trial Design

5. Trial Population

6. Interventions

b. Sections should be authored following these parameters:

1. Plain Protocol Title: Simplified protocol title understandable to a layperson but including specific indication
for which the study is meant.

2. Rationale: Include the phrase ‘Researchers are looking for a better way to treat [condition]; background or
study rationale describing the condition: what it is, what it may cause, and why it is a burden for the patients;
the reason and main hypothesis for the study; and why the study is needed, and the study medication has the
potential to treat the condition.

3. Objectives: Answer ‘What are the goals of the study?’ Specify the main and secondary objectives of the trial
and how they will be measured (e.g., the main trial endpoint is the percent change in the number of events
from baseline to a specified time or the total number of adverse reactions at a particular time after baseline).

4. Trial Design: Answer ‘How is this study designed?’ Include the description of the design and the expected
amount of time a person will be in the study.

5. Trial Population: Answer ‘Who will participate in this study?’ Include a description of the study and patient
population (age, health condition, gender), and the key inclusion and exclusion criteria.

6. Interventions: Answer ‘What treatments are being given during the study?’ Include a description of the
medication, vaccine, or treatment(s) being studied, the route of administration, the duration of treatment, and
any study-related diagnostic and monitoring procedures used. Include justification if a placebo is used.

c. Consistency and Replicability: The generated PPLS should be consistent regardless of the order of sentences or
the specific phrasing used in the input protocol text.
d. Compliance with Plain Language Guidelines: The generated PPLS must follow these plain language guidelines:

• Have readability grade level of 6 or below.

• Do not have jargon. All technical or medical words or terms should be defined or broken down into simple
and logical explanations.

• Active voice, not passive.

• Mostly one or two-syllable words.

• Sentences of 15 words or less.

• Short paragraphs of 3-5 sentences.

• Simple numbers (e.g., ratios, no percentages).

e. No Extra Content: The AI model should not invent information or add content that is not present in the input
protocol. The PPLS should only present information from the original protocol in a simplified and understandable
manner.
f. Aim for an approximate PPLS length of 700-900 words.

Figure C2: Prompt to translate a protocol into a plain language summary compliant with EU CTR No 536/2014.
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