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Abstract

Social determinants of health (SDoH) play a critical role in shaping health outcomes, particularly in pediatric
populations where interventions can have long-term implications. SDoH are frequently studied in the Electronic
Health Record (EHR), which provides a rich repository for diverse patient data. In this work, we present a
novel annotated corpus, the Pediatric Social History Annotation Corpus (PedSHAC), and evaluate the automatic
extraction of detailed SDoH representations using fine-tuned and in-context learning methods with Large Language
Models (LLMs). PedSHAC comprises annotated social history sections from 1,260 clinical notes obtained from
pediatric patients within the University of Washington (UW) hospital system. Employing an event-based annotation
scheme, PedSHAC captures ten distinct health determinants to encompass living and economic stability, prior
trauma, education access, substance use history, and mental health with an overall annotator agreement of 81.9
F1. Our proposed fine-tuning LLM-based extractors achieve high performance at 78.4 F1 for event arguments.
In-context learning approaches with GPT-4 demonstrate promise for reliable SDoH extraction with limited annotated
examples, with extraction performance at 82.3 F1 for event triggers.

Keywords:Social Determinants of Health, Pediatrics, Information Extraction, Large Language Models

1. Introduction

Health outcomes and quality of life are affected by
the conditions in which people work and live and
are referred to as Social Determinants of Health
(SDoH) (Centers for Disease Control and Preven-
tion, 2022). SDoH are particularly important in
pediatric populations because health disparities
have a long-term impact on future attainment of
health, including educational and economic suc-
cess (Thompson et al., 2016; Dickson et al., 2023).
Clinicians have continuously adapted practices by
systematically gathering pediatric patients’ SDoH
during clinical consultations (Garg et al., 2013; Ho
et al., 2016; Kazak et al., 2015). Previous research
has identified screening and intervention for SDoH
risks in pediatric patients associated with better
health outcomes and highlighted the necessity for
a more comprehensive SDoH tool (Morone, 2017).
However, there are difficulties in documenting

SDoH in Electronic Health Records (EHRs) in a
tabular format, mainly due to the diversity of SDoH
determinants, individual determinants’ infrequent
occurrence, and inconsistent reporting practice
(Linfield et al., 2023). Many pediatric SDoH ele-
ments are primarily documented within the clinical

narratives from EHRs. Such predominance of un-
structured SDoH information in the EHRs impedes
the systematic collection and utilization of SDoH in-
formation in clinical and research settings, limiting
the potential for data-driven inventions to improve
individual and public health.
To address these challenges, natural language

processing (NLP) information extraction (IE) mod-
els are needed to extract semantic representa-
tions of SDoH, to enable large-scale and real-
time use of this information. IE in the clinical do-
main and, more broadly, in the general domain
has predominantly used fine-tuning-based tech-
niques; recent advancements in instruction-tuned
large language models (LLMs) (Thirunavukarasu
et al., 2023), trained on large data repositories, are
enabling in-context learning approaches.
Although there is a robust body of IE research

exploring SDoH for adult populations, including
the development of annotated data sets and data-
driven IE models, there is comparatively little IE
research investigating the SDoH of pediatric pa-
tients. In this work, we present the Pediatric Social
History Annotation Corpus (PedSHAC), an anno-
tated corpus of ten distinct SDoH determinants on
clinical narratives from pediatric patients from the
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University of Washington (UW) hospital system.
This corpus bridges the gaps in the literature by
creating a human-annotated comprehensive and
fine-grained corpus of SDoH phenomena for pedi-
atric patients.
To the best of our knowledge, our novel pedi-

atric SDoH corpus, PedSHAC, is the first anno-
tated corpus of pediatric clinical narratives to uti-
lize comprehensive and fine-grained SDoH anno-
tations, including assigning SDoH labels such as
Status and Type that could be incorporated into
structured data fields within EHRs to represent pa-
tient information better. We believe that this cor-
pus will be a valuable resource in support of under-
standing the role of SDoH in managing children’s
health and improving outcomes. Using PedSHAC,
we explored various LLM-based IE strategies and
demonstrated that detailed SDoH representations
can be extracted with high accuracy. The de-
identified PedSHAC corpus, annotation guideline,
and code are made available through our GitHub1.

2. Related Work

Our contributions include a novel corpus of pe-
diatric clinical narratives with fine-grained anno-
tations (PedSHAC) and comprehensive IE model
development for benchmarking. To contextualize
both contributions, we describe literature related
to both SDoH corpora and IE methods.

2.1. SDoH Corpora
The interplay of various social and economic fac-
tors on patient health has led to an increased in-
terest in investigating SDoH. To facilitate SDoH
exploration, multiple SDoH corpora have been de-
veloped. However, their annotation schema might
have generally lacked granularity and comprehen-
siveness, or the patient population might have lim-
ited extension into the pediatric domain
For the adult population, many studies have fo-

cused on a limited number of SDoH factors with
singular focus such as smoking status (Uzuner
et al., 2008; Savova et al., 2008), homelessness
(Gundlapalli et al., 2013; Bejan et al., 2018), and
substance use (Wang et al., 2015; Yetisgen and
Vanderwende, 2017; Carrell et al., 2015; Alzubi
et al., 2022). Previous research also addresses
SDoH factors in specific contexts, such as sexual
health (Feller et al., 2018) and hospital readmis-
sion rate (Navathe et al., 2018). Our prior SDoH
work investigated adult SDoH factors using a fine-
grained, event-based annotation scheme encom-
passing detailed status and type labels for adults
(Lybarger et al., 2021).

1https://github.com/uw-bionlp/PedSHAC

Pediatric SDoH factors such as adverse child-
hood experiences were researched in the adult
patient population (Bejan et al., 2018; Wu et al.,
2022b,a). The rest of prior SDoH work focused
on adult populations doesn’t necessarily extend
to pediatric-patient-focused corpora, because pe-
diatric populations have unique SDoH factors and
there are many factors associated with caregivers
that impact the SDoH and health of pediatric pa-
tients. For example, education access (DeJong
et al., 2016) and food insecurity (Baer et al., 2015)
are especially important to pediatric patients. The
clinical notes of pediatric patients may describe
employment associated with patient caregivers
(Kuhlthau and Perrin, 2001; Xie et al., 2023); at
the same time, patient parents’ mental health (Stal-
lard et al., 2004) become important as pediatri-
cians continually evaluate whether children may
be at risk for child abuse and neglect (Farrell et al.,
2017). PedSHAC bridges this gap in the litera-
ture with comprehensive fine-grained annotation
of SDoH determinants with a focus on pediatric pa-
tients.

2.2. Extraction methods
SDoH IE is an increasingly explored task, and
the modeling approaches range from manually cu-
rated rules (Patra et al., 2021; Hatef et al., 2019),
traditional/shallowmachine learningmodels (Clark
et al., 2008; Wang et al., 2015), neural networks
(Bejan et al., 2018; Gehrmann et al., 2018), to
transformer-based LLMs (Patra et al., 2021; Bom-
pelli et al., 2021).
Bidirectional Encoder Representations from

Transformers (BERT) (Devlin et al., 2019) is fre-
quently used in SDoH extraction tasks for text
classification (Yu et al., 2021, 2022; Han et al.,
2022) and entity and relation extraction (Richie
et al., 2023; Lybarger et al., 2023a). Sequence-
to-sequence approaches that utilize generative
LLMs, like Text-to-Text Transfer Transformer (T5)
(Raffel et al., 2020), have also achieved high per-
formance (Romanowski et al., 2023). The most re-
cent generation of LLMs, such as GPT-4 (OpenAI,
2023), are pre-trained on large amounts of data
and instruction-tuned (Ouyang et al., 2022), en-
abling prompt-based learning methods with zero
or few in-context examples. Recent work demon-
strates the use of GPT-based models in few-shot
clinical IE (Agrawal et al., 2022; Yang et al., 2023).
This work explores pediatric SDoH extraction

using multiple transformer-based methods, includ-
ing fine-tuning through BERT- and T5-based mod-
els, and in-context learning using GPT-4. Our
experiments showed human-comparable perfor-
mance through fine-tuning and relatively high
performance through in-context learning. Our
pipeline is versatile and can be readily adapted to
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various IE tasks, as a reference for the broader re-
search community.

3. Methods

3.1. Dataset

This work utilized the clinical notes of pediatric
patients from the UW hospital system. The pa-
tient cohort consists of a random sample from
the general pediatric population to improve gen-
eralizability across patient demographics. The
clinical notes span a ten-year period (1/1/2012-
12/31/2021) with 198k distinct notes from 36k dis-
tinct patients. Clinical notes are organized into
topical sections that are delineated by specific
heading formats. Patient SDoH can be described
throughout the clinical narrative; however, SDoH
are most frequently documented in the social his-
tory sections of the clinical notes. To focus the
annotation on SDoH-dense portions of the clinical
notes, we applied a rule-based approach to iden-
tify topical section headings and the social history
sections, yielding 11k social history sections for 8k
distinct patients. The social history section text for
a patient can be very similar or identical across
notes, so we randomly selected one social history
section per patient, resulting in 8k patients, each
with a single social history section. Finally, we ran-
domly sampled 1,260 out of 8K social history sec-
tions for SDoH annotations.

3.1.1. Annotation scheme

We created detailed annotation guidelines for ten
SDoH (referred to here as event types), as listed
in Table 1. The three substance events, alcohol,
drug, and tobacco, are annotated and evaluated
separately, but their performance is reported to-
gether due to their relatively low frequency.
Each event is characterized by a trigger and

multiple arguments that describe the event’s sta-
tus, type, and status. The trigger is a span with
an event-type label. Each argument attaches to
the corresponding trigger and is assigned a multi-
class label, referred to here as a subtype label
2, representing normalized SDoH concepts (such
as Status - past, current) that are more suitable
for downstream clinical applications. Because
the most important clinical information is usually
stored in a structured format in EHRs, the nor-
malized SDoH concepts as labels can be directly
added to other structured information to create a

2arguments and subtype labels can be considered
as attribute names and attribute values. We chose this
naming convention following the previous N2C2 SDoH
challenge (Lybarger et al., 2023b).

more comprehensive patient representation. Ar-
guments can be categorized into required and op-
tional. The required arguments define the most im-
portant attributes of the event. A trigger can only
be annotated if all required arguments can be re-
solved.
The annotation scheme and event type distribu-

tion are specified in Table 1. SDoH information
was annotated using the BRAT rapid annotation
tool (Stenetorp et al., 2012). Figure 1 is an exam-
ple describing the patient’s living arrangement and
caregivers’ employment.

Figure 1: An Annotation example: the triggers
are in boldface. The box above a trigger shows
the event type, arguments and subtype labels.

3.1.2. IE evaluation

We follow the previous N2C2 SDoH challenge (Ly-
barger et al., 2023b) evaluation criteria. We eval-
uate the trigger and argument extraction perfor-
mance for each event. Two triggers are consid-
ered equivalent if they have the same event type
and overlapping spans. The trigger extraction is
framed as a named entity recognition task, and
the precision, recall, and F1 are calculated. Two
arguments are considered equivalent if they are
attached to equivalent triggers and have the same
argument type and subtype labels, and are evalu-
ated using precision, recall, and F1.

3.1.3. Annotator agreement

Six medical students at UW annotated SDoH
events in our dataset. We first performed two prac-
tice rounds to train the annotators and refine the
annotation guidelines, with 5 and 10 notes, respec-
tively. After the practice rounds, each note was
annotated by two annotators (double annotation),
with a third annotator adjudicating disagreements.
The Inter-Annotator Agreement (IAA) is evaluated
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Figure 2: Our one-step (T5-Event) and two-step (T5-2sQA) extraction models. T5-Event extracts all
SDoH events, including triggers and arguments, in one query. T5-2sQA extracts triggers and arguments
in separate queries, where Step Two includes the predicted triggers from Step One.

Event Trigger
& Arg.

Trigger examples
& Argument subtypes

# labels IAA
F1Train Validation Test

Adoption Trigger “adopted”, ... 27 4 9 100.0
Education
Access

Trigger “5th grade” , “junior year”, ... 227 35 74 80.0
Status (yes,no) 227 35 74 80.0

Employment Trigger “Employment: ... ”, “works”, ... 390 45 117 81.1

Status (employed, unemployed, retired,
on disability, student, homemaker) 390 45 117 77.8

Food Insecurity Trigger “food stamps”, “food insecurity”, ... 37 5 8 40.0
Status (current, past, none) 37 5 8 40.0

Living
Arrangement

Trigger “lives”, “foster care”, ... 676 101 195 90.4
Status (current, past, future) 676 101 195 88.5

Type*
(with both parents, with single
parent, with other relatives, with
foster family, with strangers)

566 86 160 88.4

Residence* (home, institution, homeless) 136 22 38 38.1

Mental Health
Trigger “depression”, “self-harm”, ... 45 11 15 66.7
Status (current, past, none) 45 11 15 53.3
Experiencer (patient, parent/caregiver) 45 11 15 66.7

Substance Use
- Alcohol /
Drug / Tobacco

Trigger “meth”, ”alcohol”, “smokes”,... 265 38 78 86.4
Status (current, past, none) 265 38 78 85.7
Experiencer (patient, parent/caregiver) 265 38 78 73.2

Trauma
Trigger “mentally abusive”, “bullying”, ... 132 23 33 88.9
Status (yes, no) 132 23 33 88.9

Type
(divorce / separation, loss,
psychological, physical, domestic
violence, sexual)

132 23 33 84.6

Table 1: Annotation scheme and event statistics for PedSHAC, where * indicates optional arguments.
The train, validation, and test sets contain 894, 121, and 245 notes, respectively. The IAAmicro-averaged
F1 (%) is calculated on the last round of double annotation, consisting of 90 notes. The IAA F1 micro
averages on triggers, arguments, and triggers plus arguments are 85.1, 80.0, and 81.9, respectively.

using the criteria in Section 3.1.2. We doubly an-
notated 360 notes through 4 rounds (90 notes per
round) and then singly annotated the remaining
885 notes. PedSHAC has an IAA micro average
of 85.1 F1 across all triggers and 80.0 F1 across

all arguments in the last double-annotation round
with 90 notes. Low IAAs are from infrequently oc-
curring events such as Food Insecurity and Men-
tal Health, and the annotation group carefully dis-
cussed every disagreement. PedSHAC is split into
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training, validation, and test sets. Table 1 presents
the distribution of SDoH for each split along with
the IAA for all event types. The entirety of the test
set and the majority of the validation set are doubly
annotated.

3.2. SDoH Information Extraction

We experimented with various LLM types and
learning strategies, including i) fine-tuning BERT,
ii) fine-tuning T5, and iii) in-context learning with
GPT-4. The generative model experimentation
with T5 and GPT-4 explored multiple prompt-
ing strategies, including i) single-step text2event
(Event), and ii) two-step question answering
(2sQA). Both prompting approaches were ex-
plored with T5 through fine-tuning and GPT-4
through in-context learning.
Fine-tuning BERT (mSpERT): Following prior

work in the N2C2 SDoH challenge (Lybarger et al.,
2023b), we use our high-performing, multi-label
variation of the Span-based Entity and Relation
Transformer model (mSpERT) (Eberts and Ulges,
2020; Lybarger et al., 2023a)3, as the BERT base-
line. mSpERT is a span-based extractor that
jointly extracts entities and relations. In the Ped-
SHAC extraction task, mSpERT assigns multiple
labels to a given span and assumes all predic-
tions for a given span are associated with the
same event. As all PedSHAC arguments share
the same span as the trigger, mSpERT did not gen-
erate any relation predictions between spans.
Fine-tuning T5 with single-step text2event

Prompting (T5-Event): Recent work (Lu et al.,
2021; Ma et al., 2023a) demonstrates that entity
and relation extraction tasks can be reformulated
into text2event tasks using generative encoder-
decoder models like T5 (Raffel et al., 2020; Chung
et al., 2022) and decoder-only models like GPT-4
(OpenAI, 2023). We map each event annotation
to a structured text representation (Romanowski
et al., 2023; Lu et al., 2021)4. Figure 2 illustrates
our T5-Event approach. Input sequences included
the entire social history section and a model in-
struction. The target sequence was a sequence of
SDoH events containing trigger type and text span,
followed by the required and optional arguments.
The trigger span was repeated with its argument
to associate the arguments with the trigger span.
Multiple events in the output were separated with
‘AND’ for parsing. T5-Event extracts all PedSHAC
SDOH events for a social history section in one
step.

3https://github.com/Lybarger/sdoh_
extraction

4https://github.com/romanows/
SDOH-n2c2/

Fine-tuning T5 with two-step QA Prompt-
ing (T5-2sQA): we utilize a two-step pipeline ap-
proach to first extract triggers spans (Ma et al.,
2023a) and then resolve subtype labels through
multiple-choice questions (Ma et al., 2023b). Fig-
ure 2 illustrates our two-step approach. In step
1, the model input is a prompt specifying the tar-
get event type and the social history section text,
and the model’s desired output is a list of trigger
spans associated with the target event type. In
step 2, we apply multi-choice QA to resolve the
argument subtype labels for each identified trigger
and each argument type relevant to the event type.
The input prompt specifies the argument, the rele-
vant trigger within the note, and all possible argu-
ment subtypes. An additional choice, “none,” is
added for optional arguments, indicating the argu-
ment may not be present for that event. Themodel
output is the selected subtype.

GPT-4 with In-context Learning: Previous
research demonstrates LLMs can achieve high
performance through in-context learning (Agrawal
et al., 2022). Additionally, some proprietary LLMs,
including GPT-4, cannot currently be fine-tuned.
Using prompt-based, in-context learning, informa-
tion about the desired task is conveyed through
instructions and few-shot examples. The larger
context window of recent LLMs, including GPT-4
(OpenAI, 2023), which can accommodate up to
32k tokens, allows detailed text-based instructions
and several response examples to be included in
the prompt. We explored three in-context learning
strategies: i) Event and 2sQA – simple instruc-
tions without explanation of annotated phenom-
ena. For GPT-Event, our instruction contained a
list of all the event and argument types and an
illustration of the T5-Event output format using a
randomly chosen example note. GPT-2sQA uses
the same prompts provided to T5-2sQA, ii) GPT
+ guide – 2sQA prompt with a brief description
of target trigger/argument based on a summary of
the annotation guideline, iii) GPT + 3-shot – three
few-shot examples, in addition to the GPT + guide
prompts. For the +3-shot setting, we randomly se-
lected three example social history sections from
the train set per GPT query, with some restrictions:
(1) for trigger extraction: the three example notes
contained zero, one, andmore than one triggers of
specific event type respectively; (2) for required ar-
gument extraction, three randomly selected exam-
ples of events with that argument type (positive ex-
amples); and (3) for optional argument extraction
such as residence, one random negative example
as an event without that argument, and two ran-
dom positive examples, are included from event
associated with the argument type.

https://github.com/Lybarger/sdoh_extraction
https://github.com/Lybarger/sdoh_extraction
https://github.com/romanows/SDOH-n2c2/
https://github.com/romanows/SDOH-n2c2/
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3.3. Experimental Paradigm
In fine-tuning, we trained extraction models on
the train set, optimized the hyperparameters on
the validation set, and applied the best-performing
models to the withheld test set. In in-context learn-
ing, we utilized the annotation guideline and exam-
ples from the train set. We initialized the BERT-
based mSpERT model from Bio+ClinicalBERT
(Alsentzer et al., 2019). For T5 experimenta-
tion, we initialized from Flan-T5-Large (780M)
(Chung et al., 2022), an instruction-tuned T5 vari-
ant. For GPT-4 experiments, we used Ope-
nAI’s GPT-4-32k (version: 2023-03-15-preview)
with the chat completion API provided through our
HIPAA-compliant Azure server instance and uti-
lized the ‘role’ preset (‘system’, ‘user’, and ‘assis-
tant’) arguments for providing our prompts. The
system message includes the same instructions
as the T5 experiments (except for the subtype op-
tions) and the distilled annotation guideline. The
user message includes the note and subtype op-
tions for the argument extraction. We utilize multi-
ple user-assistant input pairs to simulate the con-
versation history as in-context learning few-shot
examples.

4. Results

4.1. Trigger and argument evaluation
Following the evaluation criteria described in Sec-
tion 3.1.2, we report the extraction performance
on the withheld PedSHAC test set in Table 2 un-
der two settings: i) fine-tuning with mSpERT and
T5 and ii) in-context learning with GPT-4. We vali-
date the F1 scores and assess significance using
a pairwise non-parametric test (bootstrap test, p-
val < 0.05) (Berg-Kirkpatrick et al., 2012) for all ap-
proaches, but only present a subset of significance
testing results in Table 2 due to lack of space.
We consider the mSpERT model as a baseline
for all approaches, with GPT-Event and GPT-
2sQA base as a baseline for in-context learning
approaches. The ‘*’ indicates performance fine-
tuning approaches with significance over mSpERT
or vice versa and † marks in-context learning mod-
els with significantly higher performance thanGPT-
Event and GPT-2sQA base. The highest perfor-
mance in each row is boldfaced.
Comparing performance against human

IAA5, GPT+3-shot shows comparable perfor-

5Note that the last round IAA is not directly compa-
rable to LLM performance. Because (1) IAA is from
the last double-annotation round, while the model per-
formance is calculated on the whole test set, (2) the test
set has resolved the annotator disagreement from the
IAA. Therefore, the IAA is not an upper bound for LLM
performance on the test set, but a reference to ‘good’

mance in trigger micro average (82.3 F1) to
corresponding IAA (85.1 F1), and T5-2sQA shows
argument micro average (78.4 F1) close to cor-
responding IAA (80.0 F1). For event types with
lower IAA rates, such as Mental Health (trigger
and all arguments) and Living Arrangement
(residence argument), the extraction performance
is also lower, indicating complexity in the SDoH
descriptions.
For fine-tuning approaches, all models exhibit

high trigger extraction performance with no signif-
icant difference. Comparing arguments micro av-
erage, T5-2sQA demonstrates significantly better
performance than mSpERT, as well as all other in-
context learningmodels. But on the level of individ-
ual argument types, T5-2sQA performance is sim-
ilar to mSpERT and T5-Event, with the exception
of the Living Arrangement - type argument. We ob-
served no significant difference between T5-Event
and T5-2sQA, indicating with sufficient fine-tuning
data, the Flan-T5-large model can extract multiple
events with complex, fine-grained event annota-
tions appearing at the same time.
Comparing in-context-learning approaches

with GPT-4, GPT-Event and GPT-2sQA base
approaches demonstrate relatively lower perfor-
mance when limited scheme information is incor-
porated into the prompt. Similar to the T5-Event
and T5-2sQA models, the GPT-Event and GPT-
2sQA base approaches have no significant differ-
ence in the trigger and argument extraction perfor-
mances. Starting from GPT-2sQA base, adding
the guidelines (+guide) provides the model with
a detailed annotation scheme description, lead-
ing to significant improvement as 8.5 (from 71.3
to 79.8) among triggers and 9.8 (from 60.0 to
69.8) among arguments. Adding three in-context
learning examples further improves the perfor-
mance (GPT+3-shot) from the base 2sQA with
11.0 (from 71.3 to 82.3) among triggers and 11.6
(from 60.0 to 71.6) among arguments. Adding
the guidelines to the GPT-2sQA model (+guide)
shows comparable trigger performance with the
fine-tuned models. The GPT+3-shot achieves the
highest trigger extraction performance, albeit with-
out statistically significant improvement from the
GPT+guide. Specifically, the GPT+3-shot model
shows a significant increase in performance forEd-
ucation access, Employment, and Substance Use
extraction over GPT-Event and GPT-2sQA base,
while showing a significant increase even over
mSpERT for Employment extraction. The GPT+3-
shot model demonstrates similar performance to
the fine-tuned models for extracting Education Ac-
cess, Employment, Living Arrangement, and Sub-
stance Use event types.

performance.
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Event Trigger
& Arg.

# gold
labels

Extraction performance (F1)
Fine-tuning In-context learning

mSpERT T5-
Event

T5-
2sQA

GPT-
Event

GPT-2sQA

base +guide +guide
+3-shot

Adoption Trigger 9 84.2 82.4 84.2 58.1 66.7 66.7 54.5

Edu. Access Trigger 74 78.0 79.1 84.1 71.6 75.9 84.9 85.7†
Status 74 78.0 79.1 84.1 71.6 53.3 85.5† 84.5†

Employment Trigger 117 75.1 78.9 81.1 69.1 73.4 85.5*† 89.2*†
Status 117 71.4 76.3 74.3 60.8 64.0 76.9† 80.6*†

Food Insecurity Trigger 8 93.3 87.5 93.3 53.3 0.0 70.0 87.5
Status 8 93.3 87.5 93.3 53.3 0.0 70.0 87.5

Living Arrg.

Trigger 195 84.8 86.5 85.4 82.3 80.9 83.7 84.0
Status 195 82.6 83.4 84.4 80.2 78.4 81.0 78.4
Type 160 83.3 82.7 88.7* 76.6 75.4 81.2 77.9

Residence 38 63.5 67.6 62.2 27.7 27.2 28.0 28.6

Mental Health
Trigger 15 38.1 25.0 36.4 26.3 51.9 53.3 51.6
Status 15 28.6 25.0 34.8 26.3 35.7 38.7 43.8

Experiencer 15 9.5 8.3 17.4 21.1 35.7* 40.0* 43.8*

Subst. Use
Trigger 78 85.5* 81.6 81.9 54.1 64.2 73.5† 80.2†
Status 78 81.4 78.1 81.9 50.8 63.2 69.0 76.8†

Experiencer 78 74.5 80.3 80.6 49.2 63.2 72.1† 80.0†

Trauma
Trigger 33 62.1 54.5 53.3 58.6 5.7 55.3 70.2
Status 33 51.7 54.5 54.2 58.6 5.7 55.3 63.2
Type 33 55.2 51.5 54.2 55.2 5.7 55.3 66.7

Micro Avg Trigger 529 79.6 79.5 80.9 69.9 71.3 79.8† 82.3†
Arguments 844 75.3 76.0 78.4* 62.0 60.0 69.8† 71.6†

Table 2: Model performance F1 (%) on event triggers and arguments from the PedSHAC withheld test
set. The asterisk * indicates that performance was significantly better (p<0.05) than mSpERT or vice
versa. The symbol † marks in-context learning models with significantly higher performance than GPT-
Event and GPT-2sQA. The highest performance in each row is in boldface.

Event #
gold
labels

Event extraction performance (F1)

Fine-tuning In-context
learning

mSpERT T5-
Event

T5-
2sQA

GPT-
Event

GPT+
3-shot

Adoption 9 84.2 82.4 84.2 58.1 54.5
Edu. Acc. 74 78.0 79.1 84.1 71.6 84.5
Employment 117 71.4 73.5 74.3 60.8 79.7
Food. Insec. 8 93.3 87.5 93.3 53.3 73.7
Living Arrg. 195 72.8 69.7 74.9 19.8 12.6
Mental Health 15 9.5 8.3 17.4 21.1 37.5
Subst. Use 78 75.9 75.0 80.6 45.9 78.0
Trauma 33 51.7 51.5 53.3 55.2 59.6
Micro
Avg 529 71.6 70.4 74.7 42.6 54.0

Table 3: Model performance F1 (%) with the event-
level evaluation on the PedSHACwithheld test set.

4.2. Event-level evaluation
We additionally assess performance using a more
rigorous event-level evaluation criteria, which re-
quires the equivalence (defined in Section 3.1.2) of
all arguments in an event type. A predicted event
is considered correct if and only if its trigger over-
laps with a trigger in the gold standard and all ar-
guments in the event are correctly identified with
the correct subtype labels. Table 3 presents the

event-level performance for the best GPT-2sQA
approach and the rest of the approaches. We con-
duct the same pairwise significance testing across
all models as Section 4.1, yet exclude the results
from Table 3 to improve readability.

The T5-2sQAmodel achieves the highest micro-
average performance, as well as significantly bet-
ter performance than the in-context learning ap-
proaches in Living Arrangement, Substance Use,
and micro average. Both mSpERT and T5-Event
have similar performance to T5-2sQA. There is no
significant difference among all fine-tuning models
in any event.

Note that the trigger extraction performance
bounds event-level performance. Comparing Ta-
ble 2 with Table 3, three fine-tuning approaches
have a relatively small performance drop on the
micro average from trigger to event, as 6.2 (from
80.9 to 74.7) for T5-2sQA, 8.0 (from 79.6 to 71.6)
for mSpERT and, 9.1 (from 79.5 to 70.4) for T5-
Event. This is because trigger extraction is a more
challenging task, and the fine-tuning-based LLMs
can correctly predict the argument if they are able
to correctly identify the trigger. This demonstrates
great promise for fine-tuning-based LLMs’ down-
stream clinical use at the event extraction level.



7052

On the other hand, the GPT+3-shot shows a per-
formance drop of 28.3 (from 82.3 to 54.0). This
is mainly because the GPT+3-shot model shows
poor performance on some arguments (i.e. Living
Arrange - residence) and the difficulty of predicting
multiple arguments correctly at the same time for
the same event.

4.3. Error Analyses
Comparing errors across different learning strate-
gies, we observed that the fine-tuning models tend
to have relatively lower recall than precision, while
the in-context learning models tend to have lower
precision than recall. While fine-tuningmodels per-
form well in extracting SDoH for event types well-
represented in the training set, they demonstrate
relatively poorer generalizability. This could be be-
cause fine-tuning models contain much fewer pa-
rameters than GPT-4 and have less prior knowl-
edge about some SDoH factors. For example, if
a Mental Health trigger phrase is uncommon and
not previously seen in the train set, the fine-tuning
models can fail to extract it. On the other hand,
the in-context learning approaches tend to inter-
pret SDoH extraction in a broader context and ex-
tract events outside the annotation scheme. For
example, ‘Dad </name>, Mom</name> and Sister
</name>’ is a list of the family members’ names,
which does not explicitly state the patient’s liv-
ing arrangement. However, the GPT+3-shot ap-
proach considers this span implying a Living Ar-
rangement event and annotates it as a trigger.
Without fine-tuning, GPT+3-shot is very sensi-

tive to the instructions provided in the form of the
guideline. For example, our guideline did not state
that the residence subtype needs to be explic-
itly mentioned, and GPT-4 predicted descriptions
such as ‘lives with parents’ having the optional ar-
gument residence with the subtype home’. Such
false positives resulted in a precision of 17.2 and
28.6 F1 for the residence argument. GPT+3-shot
also sometimes extracts meaningful SDoH infor-
mation but fails to overlap with the gold annotation,
especially in the Food Insecurity events. For ex-
ample, clinicians tend to follow a template format:
‘Food insecurity: NO’. while GPT+3-shot tends to
extract the phrase following the prefix and predicts
’No’ as the trigger, the annotators annotate the pre-
fix, ‘Food insecurity’, as the gold trigger. On the
other hand, because T5-based approaches learn
from abundant annotated data, they were able to
learn from the actual implementation of the guide
and implicitly understand edge cases that are not
explicitly defined in the guide. Future GPT-based
models could use better-designed prompts to in-
corporate more detailed instructions or better sam-
ple selection approaches for in-context learning.
Consistent with errors identified by prior work

(Ji et al., 2023), both generative models (T5 and
GPT-4) show a problem of hallucination (Ji et al.,
2023), outputting with improper formats, which
range fromminor modifications to spacing, punctu-
ation, and casing. Another type of hallucinated re-
sponse is spans that do not correspond to the orig-
inal text, such as synonyms to the original SDoH
determinants. We consider the generated output
invalid if the predictions do not comply with the
predefined output format or the predictions contain
predicted spans that do not exactly match the orig-
inal text. We observed a 3-5% invalid rate for trig-
ger prediction and less than 1% for argument pre-
diction in the QA approaches. Future work could
apply approaches to better constrain the prediction
within the note and annotation scheme, including
rule-based post-editing such as minimum edit dis-
tance, self-verification (Gero et al., 2023) and con-
strained decoding (Lu et al., 2021).

4.4. Limitations
Our annotation of the SDoH events in PedSHAC is
limited to a single hospital system and its pediatric
population. The distribution of the SDoH events
may not be representative of other pediatric popu-
lations. The relatively lower frequencies of some
of the event types may result from the patient pop-
ulation at our institution. The current annotation
scheme does not allowmultiple events of the same
event type to have the same trigger span. For
example, in the sentence, ‘He lives with grandma
first, and then with his parents’, both past and cur-
rent Living Arrangement events should have the
same trigger ’lives’ but is not allowed. In future
work, we plan to modify the annotation scheme to
allow multiple events of the same type associated
with the same trigger. Some downstream clinical
research may need even more fine-grained anno-
tation.

5. Conclusion

In this work, we present a novel corpus, Ped-
SHAC, annotated for SDoH. Our corpus has 1,260
social history sections of pediatric patients anno-
tated across 10 SDoH event types. We envi-
sion such fine-grained annotation on multiple criti-
cal SDoH types can help the research community
study the impact of SDOH on other child health
outcomes. We explored LLM-based IE across
multiple dimensions, including pre-trained archi-
tectures – mSpERT, Flan-T5, and GPT-4; learn-
ing strategies – fine-tuning and in-context meth-
ods; and prompting approaches – one-step text-to-
event and two-step QA. Our results demonstrate
that detailed SDoH representations can be ex-
tracted from pediatric narratives with performance
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comparable to human annotators, providing an au-
tomatic approach for incorporating valuable SDoH
information in clinical and research applications.
Future work for the corpus development could

include addressing the current limitations, through
actual user studies to pinpoint the needs and pos-
sibly expanding the current SDoH annotation to
encompass more hospital systems and pediatric
subpopulations. We also plan to explore other IE
approaches such as (1) using effective data selec-
tion strategies such as active learning (Lybarger
et al., 2021) in the annotation phase could help
save annotation costs, (2) GPT-4 prompt-tuning in-
cluding the involvement of medical experts, auto-
matic prompt generation (Zhou et al., 2022), and
self-verification (Weng et al., 2022) to improve the
response quality.
Our proposed automatic IE approaches allow

extracted SDoH information to be directly incor-
porated in EHRs in a tabular form, we envision
our work to help downstream clinical applications
through better quantifying the presence of various
SDoHs in pediatric populations.
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