DEFT: Distribution-guided Efficient Fine-Tuning for Human Alignment

Liang Zhu, Feiteng Fang, Yuelin Bai, Longze Chen, Zhexiang Zhang, Minghuan Tan, Min Yang


Anthology ID:
2024.findings-emnlp.898
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2024
Month:
November
Year:
2024
Address:
Miami, Florida, USA
Editors:
Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
15318–15331
Language:
URL:
https://aclanthology.org/2024.findings-emnlp.898/
DOI:
10.18653/v1/2024.findings-emnlp.898
Bibkey:
Cite (ACL):
Liang Zhu, Feiteng Fang, Yuelin Bai, Longze Chen, Zhexiang Zhang, Minghuan Tan, and Min Yang. 2024. DEFT: Distribution-guided Efficient Fine-Tuning for Human Alignment. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 15318–15331, Miami, Florida, USA. Association for Computational Linguistics.
Cite (Informal):
DEFT: Distribution-guided Efficient Fine-Tuning for Human Alignment (Zhu et al., Findings 2024)
Copy Citation:
PDF:
https://aclanthology.org/2024.findings-emnlp.898.pdf

OSZAR »