
Proceedings of the 2022 COLING Workshop: The 8th Workshop on Noisy User-generated Text (W-NUT 2022), pages 90–95

90

TransPOS: Transformers for Consolidating Different POS Tagset Datasets

Alex Li1, Ilyas Bankole-Hameed1, Ranadeep Singh1, Gabriel Shen Han Ng1, Akshat Gupta2

1Carnegie Mellon University, 2JPMorgan AI Research, New York, USA
{alexli2, ibankole, ranadees, hsng}@andrew.cmu.edu

akshat.x.gupta@jpmorgan.com

Abstract

In hope of expanding training data, researchers
often want to merge two or more datasets that
are created using different labeling schemes.
This paper considers two datasets that label
part-of-speech (POS) tags under different tag-
ging schemes and leverage the supervised la-
bels of one dataset to help generate labels for
the other dataset. This paper further discusses
the theoretical difficulties of this approach and
proposes a novel supervised architecture em-
ploying Transformers to tackle the problem of
consolidating two completely disjoint datasets.
The results diverge from initial expectations
and discourage exploration into the use of dis-
joint labels to consolidate datasets with differ-
ent labels.

1 Introduction

There has been an explosion in the availability and
variety of labeled datasets in almost every domain.
Unfortunately, Artificial Intelligence (AI) practi-
tioners and researchers often find themselves un-
able to make use of labeled datasets for tasks re-
lated but not identical to their tasks. This is pri-
marily due to different labeling schemes where a
trivial mapping to merge the datasets into one larger
dataset does not exist. In this paper, we explore
the possibility of consolidating datasets that were
curated for the same task with different labeling
schemes. To make this easy to apply to any pair
of datasets, we consider a very interesting scenario
in which we attempt to make a model that can un-
derstand both datasets without ever actually seeing
any examples that have labels from both of them.

There are several domains and application ar-
eas to which our technique can be applied to, and
frankly might be the only option. For example:
When creating a data set to detect people, objects,
and vehicles in an urban environment, we may want
to supplement our existing data set with the pop-
ular Cityscapes dataset (Cordts et al., 2016), but

struggle to directly apply those labels to the merged
dataset due to a few minor differences in the label
scheme, such as a smaller or larger label set. There
could also be some information partially correlated
with the existing dataset’s labels; perhaps in our
dataset we have to distinguish between standing
and sitting people. Cityscapes does not distinguish
between these, so is it possible to use the label
information (about where humans are) to get high-
quality segmentation under our desired labeling
scheme?

The focus of this paper comes from part-of-
speech (POS) tagging. Although some tags are
common to all datasets, different datasets may have
different conventions for how to deal with more
uncommon parts of speech, like modal verbs, par-
ticles, or even when to treat something as a noun.
These problems are exacerbated in informal con-
texts. We provide a novel design for a supervised
model that can translate labels from one dataset
into another labeled dataset without requiring any
shared examples. After analyzing results, we re-
consider the situations under which it is possible to
squeeze out extra performance from these labels,
and show that it is unlikely for any kind of architec-
ture to use label information to perform better than
an equivalent model that does not, unless the archi-
tecture has access to shared examples or metadata
about the meaning of the labels.

1.1 Related Work
The problem of dissimilar POS tagsets has histori-
cally been approached in two significant ways:

1. Supervised Learning: (Shen, 2007) proposed
a supervised POS tagger with 97.3% accuracy
for the English language;

2. Create Dictionary Mapping: (Petrov et al.,
2011) proposed a Universal POS tagset to map
25 different treebank tagsets to 12 universal
POS tags.

91

There has also been a significant amount of
progress in creating POS tags for languages other
than English leveraging both supervised and unsu-
pervised methods (Das and Petrov, 2011).

Our work can be seen as a type of Multitask
Learning (Caruana, 1998) as we are learning from
two related datasets that have been labeled inde-
pendently and differently. A common technique is
to create a model for each task (Collobert and We-
ston, 2008), and enforce weight sharing between
their lower layers to allow shared low-level domain
knowledge. A key distinction between our method-
ology and Multitask Learning is that our test time
goal also makes use of labels from the other task.
We use the actual predictions of the model rather
than the more common idea of using the predicted
logits or encoded representation from a previous
layer.

This problem can also be considered as a type
of Domain Adaptation Technique. However, many
domain adaptation algorithms ((Daumé, 2009)) as-
sume some shared examples between the source
and target domains, so we cannot apply it in our
case. Those algorithms that do not make this as-
sumption have never to our knowlege tried to use
the labels that are in the target distribution but are
not the source distribution labels.

2 Setting

Let Σ be the set of unicode characters. In our set-
ting, we have two datasets that map from the space
of sentences of unicode characters X =

⋃
Σn to

part-of-speech tags. However, the two datasets use
different labeling schemes: the first may use the
standard Universal POS tagset Y while the second
uses a proprietary POS tagset Z. Each sentence
in the first dataset has a label for each word in⋃∞

n=0 Y = Y, while each sentence in the second
has a label in

⋃∞
n=0 Z = Z.

Then we can name the two datasets as DY =
{(x(i)y , y(i)) ∈ (X,Y)}i and DZ = {(x(i)z , z(i)) ∈
(X,Z)}i. Presumably, Y and Z are very highly
correlated, since they are both POS tags for a sen-
tence, just defined with slightly different rules. We
would like to expand the dataset DY to include
the sentences and labels of DZ , but unfortunately
the labels are incompatible. However, we expect
that we can still get useful information from the
labels Z. Therefore, our goal is to build a predictor
function fY : (X,Z) → Y that combines both the
text and the information of the annotated DZ to

predict what the translated label would be in the
tagset Y. Similarly, we consider the construction
of fZ : (X,Y) → Z.

Here are the two obvious baselines that could be
used to construct fY :

1. Direct Map We could use domain knowledge
to directly design a mapping from each label
Z → Y . If |Z| < |Y |, Y is not a deterministic
predictor of Z and this introduces noise into
the system. If |Z| > |Y |, converting to Y will
result in a loss of information.

2. Supervised Model We could train a model on
DY to build a function X → Y.

Note that while the second baseline is trained with
data, the first baseline is completely based on hu-
man understanding of the relationship between la-
bels. Thus, while we can naturally train a model to
match the performance of the Supervised Model,
it is much less obvious how we can train a model
to gain the performance advantage given by the
Direct Map method.

Now we consider the design of our model in-
tended to use information about both X and Z to
perform better than either approach.

3 Model

In our method, we will transform our input X
into an embedding space E using a transformer’s
encoder Enc : X → E and two GRU decoder
functions, one for each type of label Y and Z.
DY : (E,Z) → Y and DZ : (E,Y) → Z. Then
to infer a label Z for a given training sample (xy, y),
we can compute DZ(Enc(xy), y). See Figure 1 for
a visualization.

xy y xz z

ey = Enc(xy) ez = Enc(xz)

z̃ = DZ(ey, y) ỹ = DY (ez, z)

Figure 1: When evaluating the model, we use y and z
as inputs!

However, the setup used for validation will not
work for training the model. Ideally, we would like
to make a loss function that penalizes the predicted
value of z from being far from the true z corre-
sponding to xy, but we do not have any access to
the true z! We only have pairs (x, y) and (x, z),

92

xy P (z|xy) = SZ(ey)

ey = Enc(xy)

sy = SY (ey)

ẑ ∼ P (z|xy)

ỹ = DY (ey, ẑ)

Loss = CE(y, ỹ) + CE(y, sy)

Figure 2: To train the model with the Y dataset, we
simulate having Z labels by sampling from the logits of
a normal supervised model SZ . At the same time, we
train a model SY for the other dataset. Heavy dropout
is applied at the location of the blue arrow.

not (x, y, z). One way to fix this is to first predict ẑ
using (x, y) and then use that as a surrogate for true
z. To do this, we can create a supervised model SZ

that takes in the encoded variables Enc(xy) and
outputs a prediction for the label z, which we can
then input into the decoder DZ . However, the care-
ful reader will notice a flaw in this strategy: While
DZ takes the input as one-hot labels at inference
time, it takes input as logits at training time. To
reconcile this difference, we treat the softmax of
the predicted logits as a probability distribution,
from which we sample our true predicted label ẑ.

The entire training process with the inputs DY is
shown in Figure 2, and the model for DZ is made
the same way, but with the y / z inputs flipped.
In our implementation, each mini-batch contains
some examples from both datasets. To reduce the
complexity of the model, we use the same base
encoder model weights for SY , SZ , DY , and DZ ,
though in principal they could be different or only
partially shared.

The inquisitive reader may wonder why we use
SZ to predict labels z instead of reusing labels DZ

along with ground truth labels y. In this case, we
will have given the label that we want to predict
as an input to the model, and so the model can
simply learn to predict the input! For example,
suppose that in our model, rather than sampling
ẑ ∼ SZ(ey), we reused the decoder weights to
get ẑ := DZ(ey, y), then predicted ỹ = DY (ey, ẑ)
(and similarly on the other side). Then, the model
can simply learn to ignore the first argument of
DY and DZ and instead learn that DY (−, z) and
DZ(−, y) are inverses to each other. In this setup,
it will perfectly predict all the training data, but it
will be completely useless in practice. We actually
tried this setup and found that the model would

Text Ark Label
New Adjective
FC Proper noun

Menu Proper noun
Utility Proper noun

2.0 numeral
#apple Proper noun

http://t.co/VftFt2c URL or email address
Text Tweebank Label

@USER2082 A
good ADJ
night NOUN

I PRON
Love VERB
You PRON

:) SYM
http://t.co/VftFt2c U

Table 1: Example tweets from Ark and Tweebank

actually achieve performance competitive with the
supervised model for a few epochs (perhaps due to
regularization like dropout), but after training long
enough, it learns the cheat and arrives at 0 training
error and very high validation error. Now, during
training, y and z are completely derived from x. So,
in principle, DY and DZ may learn to ignore noisy
outputs y and z and make predictions based solely
on x. To prevent this, we enforce a very heavy
dropout of 0.85 on the first term before passing it
as input.

The model and training code can be found in out
Github repository1 in the footnote.

4 Datasets

In this project, we consider two datasets:

1. ARK-Twitter Kevin Gimpel (2011), which
contains 34k tokens from tweets sampled pri-
marily on Oct 27, 2010.

2. Tweebank dataset Yijia Liu et al. (2018)
which maintains 840 tweets from Tweebank
v1, 2500 examples from twitter stream from
February 2016 to July 2016.

The Tweebank dataset used UD annotation conven-
tions, while the ARK data set used the Stanford
POS Tagger trained in WSJ.

However; these two datasets have a data con-
tamination problem: there are 210 identical shared

1https://github.com/Alex7Li/TransPOS

https://github.com/Alex7Li/TransPOS

93

Figure 3: Distribution of validation labels.

tweets. In our case, however, this served as the
perfect validation set for our model.

Looking at the distribution of the labels in this
validation set (Figure 3), we see that the ambiguity
between the meanings of the labels will limit the
performance of a direct mapping.

5 Experiments

GPT-2 Tweebank Acc Ark Acc
supervised model 89.53% 89.92%

our model 89.53% 90.17%
supervisor only 86.96% 88.29%
no label input 88.09% 88.59%

Bertweet-large Tweebank Acc Ark Acc
supervised model 94.31% 95.02%

our model 94.26% 94.97%
supervisor only 94.31% 95.09%
no label input 94.22% 94.97%

direct map 88.31% 89.97%

Table 2: Accuracy (Acc) with Bertweet-large model
baseline

The first baseline was created by making a ‘di-
rect map’ between the labels. We looked at the
validation set and chose the map that gave the high-
est possible score.

The second ’supervised model’ baseline was a
normal transformer model; we train on the train
split of one dataset and evaluate on the validation
split of that same dataset.

Then, for ‘our model’, we trained with the
described architecture, using the transformers
BERTweet (Nguyen (2020)), and GPT-2 (Radford

et al. (2019)) a GPT-2 model and a Bertweet model
with the described architecture with dropout .85.
After the training was complete, we evaluated the
accuracy using the method described above to com-
pute our model accuracy.

To see if our model was really learning from the
y labels, we used of the supervised model heads
SY ◦Enc and SZ ◦Enc to get the ‘supervisor only’
accuracy. This architecture is exactly the same as
the baseline, but differences arise in the accuracy
because the training process is not the same (in
particular, there is very high x dropout).

Finally, we considered the accuracy of the full
pipeline when there with ‘no label input’: instead
of providing the z labels for the first dataset while
predicting the y labels of the second, we just took
the z labels that the model predicted and sampled
from that distribution as we do at training time.

6 Results

Figure 4: GPT-2 Validation accuracy

We trained the model with both the GPT-2 as our
encoder and the Bertweet model as our encoder.
All models were trained for 25 epochs, and we
report the accuracy at the final epoch in Table 2.

In both cases, our accuracy does not exceed the
baseline. Although the Bertweet model appears to
gain nothing from the z labels, the GPT-2 model
appears to be using the z labels to effectively im-
prove performance as indicated in Figure 4. Since
the score of the model improves when we give it
the z labels, we can say that it is actually learning
to use the joint probability distribution of the y and
z labels.

94

Our approach can only be useful when the corre-
lation between the labels of both datasets provides
information that the correlation between the en-
coder output and the true labels does not. One
possible explanation for our inability to beat the
baseline model is because the label information
was not sufficient or because the baseline model
was already too strong. However, using the weaker
GPT-2 model as a baseline did not show any im-
provement.

Although there are a multitude of different ideas
for model designs that use the y labels, it is im-
portant to first try and understand why this model
struggled in this regime. From our results, it seems
it will be difficult to design an architecture that
can effectively learn from the label information of
another dataset without using any shared examples.

To emphasize that this problem will be hard for
any architecture, let us consider a toy example of
this problem where we no longer have any X data
and are just given a set of Y POS tokens and Z
POS tokens. In this case, the the y and z labels are
still very correlated, but since it is impossible for a
model to predict the price from an integer id, our
model will not be able to learn about and make use
of the high covariance between labels. As we have
given the model two unrelated sets of labels, no
matter what model you use, it will be impossible to
relate them with anything other than the statistical
properties of the Y and Z distributions. This does
not seem too informative in general, since it will
be difficult to find the correct relationship between
two sets with no shared examples, though the fact
that POS is a multi-label prediction problem means
that you might be able to get a bit out of it. Still,
even trying to make the label distributions similar
is not easy as the labels are not in the same space.

In our model, we consider pairs of predicted y
and true z data, which ultimately cannot give any
more information than the already known relation-
ship between encoder outputs and true labels. The
hope was that replacing the predicted label y with
the true label y would allow for a final gain in accu-
racy, but that was not the case in our experiments.
There is a difficult tension to balance: When trust-
ing the predicted y label too much, the decoder will
not be able to perform well on the training dataset
because the predicted label is often wrong. But
when we do not trust the label, we cannot do well
at evaluation time.

The toy example indicates that the only other

way to gain new information would be relating the
statistical properties of the distribution. However,
it is not clear how to learn this information or how
helpful it would be. Therefore, using label infor-
mation for a separate dataset appears very unlikely
to improve performance.

A counterpoint to this argument is the perfor-
mance gap between our model and the no label
input model. This is especially clear in the early
stages of GPT-2 training. In Figure 4, we plot
the three accuracies when training GPT-2. Here,
using the ground truth labels for the y dataset gives
a better score on the z dataset than using the model
predictions for y. Thus, it seems that we can con-
clude that it is possible for the model to learn the
joint distribution P (Y,Z) and use that informa-
tion effectively. However, the problem is that the
only information about P (Y,Z) that the model is
capable of learning is what can be deduced from
P (X,Y) and P (X,Z). In trying to predict Z, it
can really only use the information that was learned
from P (X,Z), which is already contained in any
normal supervised model. The fact that the model
performance never surpasses the supervised model
is evidence toward the argument that the replace-
ment policy will not help to improve model perfor-
mance in general.

7 Conclusion

The task of consolidating datasets with different
labels and no shared examples is a hard problem.
The experiments did not provide any improvement
over the baseline of only using the x variables. This
was surprising, as the correlation between the y and
z labels is quite large. However, this may be due
to an intrinsic difficulty with the setting (no shared
examples) rather than the model design.

8 Future Work

Future work of consolidating datasets without
shared examples should focus on using semi-
supervised learning with other x labels or support-
ing the other dataset labels with metadata.

Another possible direction would be to use the
architecture in this paper together with a subset
of shared examples between the datasets. Our
approach can be easily modified to deal with la-
bels that are sometimes missing instead of all the
time. Such a modification could shine in (poten-
tially multi-label) environments with that require
frequent missing value imputation.

95

References
Rich Caruana. 1998. Multitask learning. In Sebastian

Thrun and Lorien Y. Pratt, editors, Learning to Learn,
pages 95–133. Springer.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proceed-
ings of the 25th international conference on Machine
learning, pages 160–167.

Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benen-
son, Uwe Franke, Stefan Roth, and Bernt Schiele.
2016. The cityscapes dataset for semantic urban
scene understanding.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics
(ACL ’11), page Best Paper Award.

Hal Daumé. 2009. Frustratingly easy domain adapta-
tion.

Brendan O’Connor Kevin Gimpel, Nathan Schneider.
2011. Part-of-speech tagging for twitter: Annotation,
features, and experiments. In Part-of-Speech Tagging
for Twitter: Annotation, Features, and Experiments.

Dat Quoc Nguyen. 2020. Bertweet the first large-scale
pretrained language model for english tweets. VinAi,
1.

Slav Petrov, Dipanjan Das, and Ryan T. McDonald.
2011. A universal part-of-speech tagset. CoRR,
abs/1104.2086.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. CoRR.

Libin Shen. 2007. Guided learning for bidirectional
sequence classification.

Yi Zhu Yijia Liu, Wanxiang Che, and Bing Qin. 2018.
Parsing tweets into universal dependencies. In Pars-
ing Tweets into Universal Dependencies.

https://doi.org/10.1007/978-1-4615-5529-2_5
https://doi.org/10.48550/ARXIV.1604.01685
https://doi.org/10.48550/ARXIV.1604.01685
http://petrovi.de/data/acl11.pdf
http://petrovi.de/data/acl11.pdf
http://petrovi.de/data/acl11.pdf
https://doi.org/10.48550/ARXIV.0907.1815
https://doi.org/10.48550/ARXIV.0907.1815
https://www.vinai.io/bertweet-the-first-large-scale-pre-trained-language-model-for-english-tweets/
https://www.vinai.io/bertweet-the-first-large-scale-pre-trained-language-model-for-english-tweets/
http://arxiv.org/abs/1104.2086

	Introduction
	Related Work

	Setting
	Model
	Datasets
	Experiments
	Results
	Conclusion
	Future Work

