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Abstract

Recently, fine-tuning the pre-trained language
model (PrLM) on labeled sentiment datasets
demonstrates impressive performance. How-
ever, collecting labeled sentiment dataset is
time-consuming, and fine-tuning the whole
PrLM brings about much computation cost. To
this end, we focus on multi-source unsuper-
vised sentiment adaptation problem with the
pre-trained features, which is more practical
and challenging. We first design a dynamic
feature network to fully exploit the extracted
pre-trained features for efficient domain adapta-
tion. Meanwhile, with the difference of the tra-
ditional source-target domain alignment meth-
ods, we propose a novel asymmetric mutual
learning strategy, which can robustly estimate
the pseudo-labels of the target domain with
the knowledge from all the other source mod-
els. Experiments on multiple sentiment bench-
marks show that our method outperforms the
recent state-of-the-art approaches, and we also
conduct extensive ablation studies to verify the
effectiveness of each the proposed module.

1 Introduction

Sentiment classification (Cambria et al., 2020)
aims to predict the sentiment label for each textual
data automatically (Susanto et al., 2022), which
is one of the most popular natural language pro-
cessing (NLP) tasks with many important applica-
tions, such as social media monitoring (Ortigosa
et al., 2014), market research (Jabbar et al., 2019),
conversation sentiment detection (Tu et al., 2022),
etc. Very recently, the pre-trained language models
(PrLMs), e.g., BERT (Devlin et al., 2019), have
demonstrated significant improvements on wide-
range of NLP tasks, including the sentiment clas-
sification. This framework includes two steps: the
transformer-based (Vaswani et al., 2017) model
is first pre-trained on large unlabeled corpus, and
then fine-turned on the labeled datasets for the
downstream tasks. However, as illustrated in Fig-

Figure 1: Illustration of domain-shift for sentiment clas-
sification. Top: different domain reviews have different
subject words (marked with blue) with different senti-
ment descriptions (marked with underlines). Bottom:
the different data distributions will lead to performance
degradation.

ure 1(Top), different domain texts often contain dif-
ferent subject words, and have different sentiment
descriptions, which lead to decreased performance
induced by domain-shift (Pan and Yang, 2010)(Fig-
ure 1(Bottom)).

Unsupervised domain adaptation (UDA) is an-
other hot research topic in machine learning to
address the domain-shift. It aims to transfer the
knowledge from the source domain to the target
domain with the labeled source data and unlabeled
target data. This is often achieved by minimiz-
ing a specific distance between the source and tar-
get domains to learn the shared domain-invariant
features. For example, Guo et al. (2020) exploit
several distance metrics (e.g., Maximum Mean Dis-
crepancy (MMD) Gretton et al., 2012, Correlation
Alignment (CORAL) Sun et al., 2016) for domain
adaptation in the context of text classification tasks.
While, Li et al. (2017) use a domain classifier to
obtain domain-invariant sentiment features via ad-
versarial training (Ganin et al., 2016) between the
source and target features.

Despite the progress of recent cross-domain
sentiment analysis works which mainly focus on
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single-source domain adaptation setting, it is still
cumbersome to apply these domain alignment
methods on the multi-source sentiment adaptation
tasks, which is more practical in real-world sce-
narios. Simply combining all the source domains
into a single dataset may deliver worse perfor-
mance compared with the best result from one
of source dataset (Guo et al., 2018), due to the
various source distributions. Meanwhile, with the
number of source domains increasing, the corre-
sponding computation cost and complexity will
be dramatically increased (Dai et al., 2020; Xue
et al., 2020). In particular, the recent dominant
frameworks PrLMs (Devlin et al., 2019; Yang et al.,
2019b) are adopted as the backbone for feature ex-
traction, which usually contains a large amount of
training parameters (Ye et al., 2020).

Therefore, there is a strong motivation to de-
velop an efficient multi-source unsupervised sen-
timent adaptation framework which can gener-
alize well to the target domain with no labeled
target data. Recent self-training methods (He
et al., 2018; Zou et al., 2019; Liu et al., 2021)
achieve advanced performance on many unsuper-
vised domain adaptation tasks by iteratively up-
dating the pseudo-labels of the target data with
current adapted model, and the model can be re-
trained with these self-annotated data. However,
the pseudo-labels are not always reliable due to the
distribution shift between the source domain and
the target domain, and the incorrect pseudo-labels
can significantly hurt the final adaptation perfor-
mance. Several techniques are proposed to reduce
the negative effect of noisy pseudo labels, such
as high-confidence threshold (Zou et al., 2019),
self-ensemble bootstrapping (He et al., 2018), mu-
tual information maximization (Ye et al., 2020),
etc., which demonstrate improved performance on
single-source cross-domain adaptation tasks. In
this paper, we propose a novel Asymmetric Mutual
Learning (AML) strategy to estimate the pseudo-
labels robustly, and we show this strategy is well-
suited to the unsupervised multi-source domain
adaptation setting. Specifically, we design a clas-
sification model for each source domain. For each
source model, the pseudo-labels of target data are
derived from the ensembles of all the other source
models. In contrast with traditional deep mutual
learning (Zhang et al., 2018) which distills the
knowledge of a single dataset with multiple models,
our AML can utilize the knowledge from multiple

datasets under different distributions. Therefore,
each source model can be enhanced with the other
source models. Unlike traditional self-training
methods which generate pseudo-label by itself, our
AML is more robust to the noisy pseudo-label.

In addition, we tend to use the features ex-
tracted from BERT for efficient sentiment adap-
tation, and this feature-based adaptation method is
more memory-friendly compared with fine-tuning
BERT. To fully exploit BERT features, we pro-
pose a dynamic network (Yang et al., 2019a) for
better aggregating the features from different lay-
ers, which is referred to Dynamic Feature Net-
works (DFN). Compared with attention-based fu-
sion (Vaswani et al., 2017) which only scales the
features, our DFN can dynamically adjust the pa-
rameters of the network according to each instance
input for better performance. Together with the two
proposed modules (AML and DFN), we achieve
new state-of-the-art performance on the widely-
used sentiment benchmarks (Blitzer et al., 2007)
under unsupervised multi-source setting. We sum-
marize our contributions as follows:

• We propose a novel asymmetric mutual learn-
ing (AML) method, which is designed for
multi-source unsupervised sentiment adapta-
tion task and beneficial for real-world senti-
ment analysis applications.

• To achieve efficient adaptation on sentiment
classification, we propose a dynamic feature
network (DFN), which allows to dynami-
cally assemble multiple parameters for the
extracted features, and not update the encoder
of PrLMs during adaptation training.

• We demonstrate that the proposed model
achieves SOTA performance on multiple senti-
ment adaptation benchmarks, and the ablation
studies verify the effectiveness of each pro-
posed module.

The remainder of the paper is organized as follows.
Section 2 introduce the related work, followed by
the proposed framework in Section 3. Experimen-
tal results are reported in Section 4. Conclusion is
drawn in the last Section 5.

2 Related work

In this section, we mainly focus on recent related
methods based on Deep Neural Networks (DNNs)
due to their superior performance.
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Sentiment Classification: aims to predict the
sentiment polarity of a given texts. Dang et al.
(2020) compare many DNN-based methods, such
as Convolutional Neural Networks (CNNs) (Kim,
2014), Recurrent Neural Networks (RNNs) (Zhou
et al., 2016), etc. However, these methods often use
word embedding or TF-IDF as the representations
of the texts, which can not capture the context infor-
mation within a sentence. Recently, with the advent
of pre-trained language models which achieve im-
pressive performance in many NLP tasks (Devlin
et al., 2019), more and more works adopt these
PrLMs as the backbone for sentiment analysis (Sun
et al., 2019a; Dang et al., 2020). Despite their
great success, the performance of these models is
still suffering from domain-shift of the datasets (Li
et al., 2021).

Unsupervised Domain Adaptation: is an at-
tractive topic for dealing with the domain-shift
problem. The mainstream is to reduce the distribu-
tion discrepancy between the source and the target
domains (Ganin et al., 2016; Guo et al., 2018). For
sentiment classification tasks, some previous works
aim to identify domain-invariant pivot words (Ziser
and Reichart, 2018; Li et al., 2018). However, pivot
words identification is tedious and may be inaccu-
rate. Ganin et al. (2016) and Li et al. (2017) tend
to minimize the whole sentence representation by
a binary domain classifier. As for the more chal-
lenging multi-source adaptation setting, mixture-of-
experts (Guo et al., 2018) aligns the each domain-
pair based on MMD for simplicity, and ensemble
all the source prediction based on the distance met-
ric. While, Zhao et al. (2018) uses a multi-class do-
main classifier to align multi-domain distributions
and Dai et al. (2020) incorporates pseudo-labels to
further improve the performance. Fu and Liu (2022)
share a similar idea but using BERT as the back-
bone. In contrast to most domain-alignment meth-
ods which become complex with the number of
source domains increasing, we turn to self-training
methods which demonstrate effective performance
for UDA (Zou et al., 2019; Liu et al., 2021; Dai
et al., 2020), and the asymmetric mutual learning
(AML) is proposed for robust pseudo-label genera-
tion in multi-source adaptation setting.

Dynamic Networks: aim to adjust the networks’
architectures or parameters conditioned on each in-
put (Yang et al., 2019a). SkipNet (Wang et al.,
2018) can decide whether a block is kept and not,
which can significantly reduce the inference time.

CondConv (Yang et al., 2019a) can select the best
combination of the convolution parameters dynami-
cally, which increase model capacity with marginal
computation cost. DyCNN (Chen et al., 2020)
shares a similar idea, while uses softmax function
to derive the attention coefficiency for each con-
volution kernel. In this paper, we are interested in
adapting the features extracted from BERT for sim-
plicity and efficiency. Thus, we propose a dynamic
feature network (DFN) to fully exploit the features
and adjust the network parameters accordingly for
better performance.

3 Method

In this section, we first introduce the overall frame-
work for multi-source unsupervised sentiment adap-
tation. Next, we provide further details of each
proposed module. The detailed training procedures
are presented in the last section.

3.1 Overall Framework

For multi-source unsupervised domain adaptation
setting, there are k labeled source domains S =

{Si}ki=1 (where Si = {xSi
t , ySi

t }
|Si|
t=1) and an unla-

beled target domain T = {xTt }
|T |
t=1, | · | indicates

number of samples in the domain. All these do-
mains have different data distributions: PSi ̸= PT
and PSi ̸= PSj . Our goal is to train a sentiment
classification model with S and T , which general-
izes well to the target dataset.

Many previous works adopt statistic metrics or
adversarial training to align the distributions be-
tween each domain-pairs, this strategy becomes un-
stable and complicated with the number of source
domains increasing. As shown in Figure 2, we
use BERT as the feature extractor for the text in-
put, and build a classifier head for each source
domain. Without explicit alignment, we design an
asymmetric mutual learning method to estimate the
pseudo labels of the target data directly, so that all
the source classifier can be adapted to the target
domain and mutually enhanced, simultaneously.

Since BERT is a large-scale pre-trained language
model, we tend to only use its features for efficient
adaptation and inference at test time. To this end,
we propose the dynamic feature network to fully ex-
ploit the extracted features from different layers by
adjusting the network parameters (See section 3.3
for details).

During test stage, we simply average the outputs
of all the classifiers as the final prediction.
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Figure 2: Overview of the proposed framework. We use the pre-trained BERT for feature extraction. DFN indicates
dynamic feature network for exploiting better features with dynamic parameters. AML indicates asymmetric mutual
learning for robust pseudo labels.

3.2 BERT Feature Extraction

We first extract text features with BERT (Devlin
et al., 2019), which consists of several transformer
layers. For each layer, we will use the represen-
tation of the first CLS token as features. Since
the transformer layer is based on the self-attention
module (Vaswani et al., 2017), the CLS token rep-
resentation should contain all the information from
a input sentence.

Given a text input x, the extracted feature from
the last lth layer can be expressed as follows:

fl = TransformerCLSl (x), (1)

As shown in Figure 2, multiple CLS features from
last N transformer layers in BERT can be obtained
and fed to the proposed dynamic feature network
(DFN) for further exploitation.

3.3 Dynamic Feature Network

The text features from BERT are powerful due
to the contextualize information (Peters et al.,
2019). Sun et al. (2019b) and Merchant et al. (2020)
also demonstrate that features from different layers
present different behaviors. Since we aim for effi-
cient adaptation without updating the large amount
of parameters within BERT extractor, fully exploit-
ing the representations from different layers is nec-
essary for better adaptation performance. There-
fore, we propose a novel dynamic feature network
(DFN) to adjust the network’s parameters based on
the input for dynamic adaptation of features.

As shown in Figure 3, the parameters of a fully-
connected layer in DFN are a function of the in-
put features. DFN can be adaptive to each in-
put and choose the optimal parameters automat-
ically. There are two advantages: our model can
not only fully exploit the different layer features by
discovering the optimal aggregation manner, but
also increase the model’s representation power with
marginal computation cost.

We define the dynamic parameters of DFN as
Wf , which is conditioned on the input features f .
Following Merchant et al. (2020), we select the last
N layers of BERT for input features to DFN, which
means f = {f1, f2, ..., fN}. Similar to Chen et al.
(2020), the dynamic parameters of the DFN can be
derived from combination of N linear parameters
{Wl}Nl=1, which is defined as follows:

Wf =
N∑
l=1

πl(f)Wl

s.t. πl(f) ∈ [0, 1],

N∑
l=1

πl(f) = 1 (2)

where the linear parameters {Wl}Nl=1 are trainable
parameters, and πl(f) denotes the weight for the
parameters Wl, which is conditioned on the input
feature f . As shown in Figure 3, we use a two-fully
connected layers followed by a softmax activation
to compute the dynamic weight πl(f) for each Wl.
Therefore, the parameters within the DFN can be
dynamically adjusted based on each input f to fully
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Figure 3: The architecture of the dynamic feature net-
work. ’FC’ denotes the fully-connected layer.

exploit the optimal aggregation manner for better
feature adaptation performance.

The final dynamic feature representation pro-
duced by the DFN is defined as:

z = g(Wf · f + b) (3)

where g(·) is ReLU activation function used in this
work.

3.4 Asymmetric Mutual Learning
We argue that explicitly reducing the distribution
gap between each source-target pair is cumber-
some for multi-source adaptation setting, especially
for the domain adversarial training scheme (Ganin
et al., 2016), which is often unstable and increase
the training difficulties (Guo et al., 2018). A
promising alternative is to estimate the pseudo-
labels for the target domain to guide the adaptation
to the target domain, iteratively. Nevertheless, the
pseudo-label generated by the model itself, i.e., self-
training, will inevitably contain noise (Liu et al.,
2021), which can hurt performance seriously.

As shown in Figure 2, we build a classification
head Ci for each source domain Si. Therefore,
we can generate the pseudo-label for one classifier
by ensembling the output from all the other source
domains {Cj}j ̸=i, which is called Asymmetric Mu-
tual Learning (AML). We define the output of Ci as
pθCi

(z), where z is the output from DFN, and θCi

includes the trainable parameters within the DFN.
The pseudo-label of a target representation zT for

Ci can be derived as ŷT =

∑
j ̸=i pθCj

(zT )

k−1 , where
k is the number of source domain. The objective
function for Ci can be formulated as follows:

min
θCi

ℓCi
cls + ℓCi

aml, (4)

where ℓcls and ℓaml indicate supervised classifica-
tion loss and asymmetric mutual loss, respectively.

Both are defined as follows:

ℓCi
cls = EzSi ,ySi [−ySi log pθCi

(zSi)] (5)

ℓCi
aml = EzT ||pθCi

(zT )− ŷT ||2 (6)

where the superscript denotes the domain name.
Different from the traditional mutual learn-

ing (Zhang et al., 2018) with a single dataset, our
proposed AML framework is targeted for multi-
source unsupervised domain adaptation, and has
multiple branches which corresponds to multiple
source domains. It not only maintain the domain-
specific information by training separate classifiers
for corresponding source domains, but also exploit
the complementary knowledge from all the other
source domains to estimate the pseudo-label of tar-
get data for adaptation. It is noting that the Eq. 4
contains two parts, the first supervised source train-
ing enables diversified source classifiers, which in
turn provide more robust ensembled pseudo-labels
of target data for the AML training.

Therefore, during adaptation process, all the
source models can be collaboratively enhanced
with each other, and exploit robust target knowl-
edge from diverse source models for better multi-
source adaptation results.

3.5 Training Procedures
We proceed with the training by alternately optimiz-
ing Ci for each source classifier based on the loss
objective shown in Eq. 4. The detailed optimization
procedure is summarized in Algorithm 1.

During test, we average the output of all the
classifiers {Ci}ki=1 for the final prediction.

4 Experiments

In this section, we extensively evaluate our model
on two widely-used sentiment adaptation bench-
marks, Amazon view datasets 1 and Skytrax view
datasets 2. First, we introduce the datasets, experi-
ment setup, and implementation details. Then, the
performance of recent state-of-the-art adaptation
methods are reported for comparisons. Besides, we
also conduct detailed ablation studies to verify the
contribution of each proposed module.

4.1 Experimental Settings
Amazon view dataset: contains reviews from four
products, namely, books (B), DVD (D), electron-

1https://www.cs.jhu.edu/ mdredze/datasets/sentiment/
2https://github.com/quankiquanki/skytrax-reviews-

dataset



6939

Method D, E, K→ B B, E, K→ D B, D, K→ E B, D, E→ K Avg.
Previous methods
DANN (Ganin et al., 2016) 0.779 0.789 0.849 0.864 0.820
MDAN (Zhao et al., 2018) 0.786 0.807 0.853 0.863 0.827
MoE (Guo et al., 2018) 0.794 0.834 0.866 0.880 0.843
2ST-UDA (Dai et al., 2020) 0.799 0.839 0.851 0.877 0.841
CTDA (Fu and Liu, 2022) 0.800 0.839 0.866 0.880 0.846
Our methods
Single-best 0.837 0.831 0.857 0.872 0.849
Source-combined 0.832 0.843 0.863 0.885 0.856
Our model 0.852 0.856 0.880 0.892 0.870

Table 1: Comparison of multi-source unsupervised domain adaptation results on Amazon review datasets. The best
results are denoted with bold.

Algorithm 1 Pseudo-code of AML
Input: Extracted last N BERT features for all the

domains, mini-batch size B, learning rates ζCi

for each classifier Ci, i ∈ [0, k];
Output: θCi , i ∈ [0, k];

1: for epoch = 1 to N do
2: for i = 1 to k do
3: for each mini-batch in the Si domain do
4: Randomly sample target features;
5: Compute the pseudo-label ŷ with the

other {Cj}j ̸=i

6: Update Ci via:
θCi ← Adam(∇θCi

(ℓCi
cls +

ℓCi
aml), θCi , ζCi);

7: end for
8: end for
9: end for

ics (E), kitchen (K). Each produce represents one
domains, and has 1,000 positive reviews (label 1)
and 1,000 negative reviews (label 2), while has
different number of unlabeled reviews. Following
similar multi-source unsupervised domain adapta-
tion adopted in (Fu and Liu, 2022), we select one
of domain as target domain, the rest domains are
used as multi-source domains.
Skytrax view dataset: includes two air-travel-
related reviews from skytrax website, i.e., Airline
(AL) and Airport (AP), which contain 41,396 and
17,721 reviews, respectively. The data distribution
discrepancy between the Amazon product views
and air-travel reviews should be large, we use
all four product datasets as source domains and
one of Skytrax view dataset as the target domain,
to demonstrate the effectiveness of our proposed

method in this challenging settings. To align with
Amazon view datasets, we randomly sample 1,000
positive and 1,000 negative reviews from AL and
AP domains for training.
Implementation details: In all experiments, we use
the pre-trained BERTbase-uncased (Devlin et al.,
2019) to extract features from the last 4 transformer
layers, which demonstrates both effectiveness and
efficiency, reported in (Peters et al., 2019; Merchant
et al., 2020). All the classifiers have the same archi-
tecture, which includes a DFN module, followed by
two fully-connected layers. We use Adam (Kingma
and Ba, 2015) optimizer and set the learning rate
to 10−4, weight decay to 10−4, batch size to 16.

4.2 Experimental Results

Results on Amazon review benchmarks: Table 1
compares the sentiment classification accuracies
of our method and recent multi-source unsuper-
vised adaptation methods on Amazon review bench-
marks. It is noted that our method achieves the
best performance on all the multi-source adapta-
tion tasks, which demonstrates the superiority of
our proposed method.

Most previous unsupervised multi-source senti-
ment adaptation methods adopt word embedding
as features, which is lack of contextualized infor-
mation for each word. We show that the BERT
features adopted by our method can achieve rela-
tively better results. ‘Source-combined’ indicates
that we train the DFN-based source classifier us-
ing the combination of all the labeled data in the
multi-source domains, which is demonstrated to be
a strong baseline for multi-source unsupervised do-
main adaptation tasks (Guo et al., 2018). As shown
in Table 1, ‘Source-combined’ achieves compara-
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Method B, D, E, K→ AL B, D, E, K→ AP Avg.
Single-best 0.841 0.687 0.764
Source-combined 0.832 0.680 0.756
Our model 0.850 0.695 0.772

Table 2: Adaptation performance from multiple product review domains (Amazon) to one of air-travel review
domains (Skytrax). The best results are denoted with bold.

Method D, E, K→ B B, E, K→ D B, D, K→ E B, D, E→ K
Without DFN
Last features 0.831 0.845 0.873 0.873
Avg features 0.836 0.839 0.868 0.878
Our model 0.852 0.856 0.880 0.892

Table 3: Ablation study the effect of the proposed DFN module. The best results are denoted with bold.

ble or better results on all the adaptation setting
with an average accuracy of 85.6%, which out-
performs previous methods by around 1 to 3 per-
centage points. In addition, our AML-based train-
ing strategy achieves accuracy of 87.0% on aver-
age, which surpasses the strong baseline (Source-
combined’) method and the most recent method (Fu
and Liu, 2022) (84.6%) by 1.4 and 2.4 percentage
points, respectively.
Adaptation Results from Amazon to Skytrax:
Table 2 reports the performance of adaptation to AL
and AP domains by using all the Amazon review
datasets as multi-source domains. ‘Source-best’
indicates the best performance achieved under the
single-source domain adaptation setting, the cor-
responding source domain often has more similar
distribution to the target domain. Due to the large
domain gap between the product reviews in Ama-
zon and air-travel-related reviews in Skytrax, nega-
tive transfer is often occurred. As shown in Table 2,
the ‘Source-combined’ performance is worse than
that of ‘Single-best’ baseline in both tasks, which
indicates that the extra source data are not fully
leveraged, and the distribution shift among multi-
source domains brings about the negative effects.
While, our model based on the AML strategy can
consistently improve the final adaptation perfor-
mance, which achieves 85.0% and 69.5% accuracy
on the AL domain and AP domain, respectively.
The corresponding average accuracy is better than
the baselines by 1 to 2 percentage points.

4.3 Ablation Study

Effectiveness of AML: We make comparison
among ‘Source-combined’, ‘Single-best’ and our

AML-based method to illustrate the effectiveness
of the AML module. We show that simply com-
bining all the source data together may hurt the
final result due to various source domain distribu-
tions. As shown in Table 1, for the D,E,K→ B
task, ‘Source-best’ surpasses ‘Source-combined’
by 0.5 percentage point. As shown in Table 2, both
two tasks demonstrate the same results. While, our
AML-based adaptation can achieve consistently im-
proved performance without negative transfer in all
multi-source sentiment adaptation tasks. We con-
sider that AML makes best of each domain’s spe-
cific knowledge and enables collaboration among
multiple source classifiers to address the negative
transfer, so that delivers better performance than
both ‘Source-best’ and ‘Source-combined’ base-
lines. We also tried the traditional self-training
methods on the adaptation from Amazon domains
to the Skytrax domain, and found that the accu-
racy quickly drops caused by the noisy label gener-
ated by the model itself. We speculate that during
our proposed AML adaptation, each source model
learns from the other models, which will not ac-
cumulate the same errors as done in self-training.
Therefore, AML is more robust to the noisy-labels,
and more effective and suitable in the multi-source
unsupervised domain adaptation tasks.

Effectiveness of DFN: We conduct several experi-
ments to verify the effect of DFN. As shown in Ta-
ble 3, we first use the last transformer layer features
of BERT as input, which indicates ‘last features’.
We also use the same features (last 4 transformer
layers) as input, but just average them without DFN
module, which indicates ‘Avg features’. It can be
observed that simply averaging the features from
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different layers of BERT delivers comparable per-
formance with only using the last features (less
than 1 percentage point in most cases). However,
our DFN module can dynamic adjust the network’s
parameters for better exploiting the input features
from different layers. Therefore, the corresponding
performance is consistently better than the above
two baselines as reported in Table 3, which demon-
strate the effectiveness of DFN.

5 Conclusion

In this paper, we propose a novel framework for
multi-source unsupervised domain adaptation on
sentiment classification. To achieve efficient adap-
tation with the recent large-scale and powerful pre-
trained BERT model, we propose a dynamic feature
network to find the optimal network parameters for
better features exploitation. Besides, instead of
explicitly reducing the distribution discrepancy be-
tween domain pairs which becomes complex with
the number of source domain increasing, we design
a asymmetric mutual learning strategy to estimate
the pseudo-label of the target data directly. We
conduct extensive experiments and ablation studies
that verify the effectiveness and superiority of our
proposed model.
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