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Abstract

Relevant to all application domains where it is
important to get at the reasons underlying senti-
ments and decisions, argument mining seeks to
obtain structured arguments from unstructured
text and has been addressed by approaches typ-
ically involving some feature and/or neural ar-
chitecture engineering.

By adopting a transfer learning methodology,
and by means of a systematic study with a wide
range of knowledge sources promisingly suit-
able to leverage argument mining, the aim of
this paper is to empirically assess the potential
of transferring such knowledge learned with
confluent tasks.

By adopting a lean approach that dispenses
with heavier feature and model engineering,
this study permitted both to gain novel empiri-
cally based insights into the argument mining
task and to establish new state of the art levels
of performance for its three main sub-tasks, viz.
identification of argument components, classi-
fication of the components, and determination
of the relation among them.

1 Introduction

Argument mining is a Natural Language Process-
ing (NLP) task consisting in taking unstructured
text as input and returning it annotated such that
each portion occurring in it that is an argument is
properly delimited and analysed (Schneider et al.,
2013; Peldszus and Stede, 2013; Lippi and Torroni,
2016; Habernal and Gurevych, 2017; Wachsmuth
et al., 2017; Stede and Schneider, 2018; Lawrence
and Reed, 2020). Argument mining relates to the
high-level human capacity of reasoning (Walton
et al., 2005), it is at the core of social interaction
concerned with persuasion (Mercier and Sperber,
2017), and it is of utmost importance to enhance
applications across different domains that aim at
enhancing their services beyond mere sentiment
analysis, on the basis of the reasons uncovered for

the associated sentiments and decisions (Habernal
et al., 2014).

Argument mining has been decomposed into
a number of sub-tasks. While the number and
profiling of these tasks depends on the theo-
retical approach adopted to analyse arguments
(Van Eemeren et al., 2019), they typically involve
some sort of delimitation of the text segments con-
veying argument components, the classification of
the roles of these components (e.g. premises, con-
clusions, etc.), and the classification of the type
of relation among those components (e.g. support,
attack, etc.) (Lawrence and Reed, 2020).

These sub-tasks and their eventual pipeline in
argument mining have been addressed by means
of supervised deep learning approaches that in-
volve some degree of neural architecture engineer-
ing (Eger et al., 2017; Potash et al., 2017; Nguyen
and Litman, 2016) a.o. Recently, first attempts
to approach argument mining with Transformers
have been reported in the literature (Wang et al.,
2020; Rodrigues et al., 2020a) a.o., tough at an ex-
ploratory level that leaves much of its strength still
untapped.

This has been combined with experimentation
with transfer learning (Caruana, 1997; Ruder,
2019). Given its complexity, and the associated
difficulty in producing gold labelled data, argument
mining is a task with a scarcity of data sets that are
needed to support supervised learning approaches.
Enhancing the argument mining task by transfer-
ring knowledge elicited when solving other natural
language processing tasks is thus a promising ap-
proach to alleviate such scarceness. This has been
tried in the literature (Mohammad et al., 2016; Stab
et al., 2018; Choi and Lee, 2018; Habernal et al.,
2018; Rodrigues and Branco, 2020) a.o., though
at a haphazard level that leaves still much of its
potential to be studied.

For humans, argumentation is a high level cogni-
tive task that goes together with a number of other
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capacities relating to linguistic syntactic and seman-
tic processing, to entailment and paraphrasing, to
question answering and language comprehension,
to reasoning, to common sense, etc. (Lawrence and
Reed, 2020; Lauscher et al., 2021). Interestingly,
there is now available in the literature a wide range
of data sets and respective NLP tasks that permit to
address a wide range of these different dimensions
and use them as auxiliary sources of knowledge
in transfer learning approaches to argument min-
ing (Wang et al., 2018, 2019a) a.o.

In this context, our goal is to empirically as-
sess the potential of transfer learning to support
argument mining by means of a systematic study
with a wide range of possible sources of related
tasks and knowledge possibly suitable to be trans-
ferred. In this paper we report on the findings of
exploring a vast experimental space that results
from: performing sequential single-step transfer
learning from over 40 auxiliary tasks to each one
of three main sub-tasks of argument mining (Stab
and Gurevych, 2014, 2017) during the fine-tuning
phase (Section 4); further explore the source tasks
that supported the best single-step transfer learning
by experimenting with ways of possibly combining
them in multi-step transfer learning processes, and
further explore these tasks in a multi-task transfer
learning setting (Section 5). This is preceded by
an overview of related work (Section 2) and by
the presentation of the experimental setup adopted
(Section 3).

By undertaking this study, not only new state-of-
the-art results were achieved for argument mining,
as also new empirically based insights were gained
on how this task can be enhanced, showing the
effectiveness of transfer learning to leverage argu-
ment mining and to alleviate its data scarcity when
combined with a lean approach that dispenses with
heavier feature and model engineering.

2 Related work

Transfer learning is a technique in machine learn-
ing that leverages knowledge from other, so called
source tasks to improve the learning of a target
task (Caruana, 1997), being a methodology to alle-
viate the lack of labelled data for the latter (Ruder,
2019).

2.1 Transfer learning for argument mining

Four families of approaches of transfer learning
for argument mining have been reported in the

literature: (i) transfer learning across discourse
domains for the same argument mining sub-task;
(ii) cross-lingual transfer learning for a given sub-
task; (iii) multi-task learning among argument min-
ing sub-tasks; and (iv) sequential transfer learning
from sources tasks that are not argument mining
sub-tasks. A brief overview follows below.

Several papers have applied transfer learning
with a domain adaptation approach for identify-
ing components and clausal properties (Al-Khatib
et al., 2016; Ajjour et al., 2017; Daxenberger et al.,
2017). Typically, a model is trained with data sets
from various discourse domains and is evaluated
over each domain.

Cross-lingual transfer learning for argument
mining (Aker and Zhang, 2017; Sliwa et al., 2018;
Eger et al., 2018; Rocha et al., 2018) is mainly per-
formed through direct transfer (McDonald et al.,
2011) or projection (David et al., 2001) techniques.
Direct transfer techniques train a model with the
source language data that initializes a new model
for a target language, typically with less to no data.
Projection techniques resort to mapping the same
labels from the source language data set to a target
language data set by resorting to parallel corpora.

The argument mining pipeline has been ad-
dressed also with transfer learning by multi-task
and sequential approaches (Cabrio and Villata,
2013; Peldszus and Stede, 2015; Eger et al., 2017;
Potash et al., 2017; Niculae et al., 2017; Galassi
et al., 2018; Schulz et al., 2018; Mensonides et al.,
2019; Chakrabarty et al., 2019; Accuosto and Sag-
gion, 2019; Cheng et al., 2020). Most proposals
train models pipelining the sub-tasks in some way.

Transfer learning from related tasks has also
been shown to improve the performance of argu-
ment mining sub-tasks. (Stab et al., 2018) trans-
ferred shared knowledge from two different tasks: a
stance detection task (Mohammad et al., 2016) and
a topic identification task. (Choi and Lee, 2018),
in turn, transferred knowledge from the Argument
Reasoning Comprehension Task (Habernal et al.,
2018) for a clausal classification sub-task.

2.2 Main sub-tasks

To proceed with our systematic study of transfer
learning for argument mining on a mainstream
pipeline of sub-tasks (Lawrence and Reed, 2020),
which includes identifying argument components,
classifying their clausal roles and determining the
relational properties among them, we resorted to



6861

the AAEC corpus (Stab and Gurevych, 2014, 2017),
a collection of annotated essays in English, which
has been subject to various studies. An example
from this data set is displayed in Figure 1.

In order to further support this option, it is worth
noting that there is not in the literature a set of
commonly agreed standard argument mining sub-
tasks and that persuasive arguments, contained in
the AAEC corpus, are by no means peripheral to
argumentation, which is ultimately about persua-
sion. It is also worth noting that, while in NLP
in general, it is always better to have more data
sets/tasks for evaluation, the empirical study in this
paper builds on a strong series of recent investiga-
tions that are based on one of the few data sets for
argument mining, the AAEC, that given its quality
and volume, has permitted comparison of results
and the objective assessment of possible advances.

Figure 1: Example of a labelled essay in AAEC.

The AAEC corpus integrates the annotation of
every sub-task in the argument mining pipeline
into a single data set. It contains 402 manually
annotated essays,1 in English, with 7,116 sentences
over 1,833 paragraphs spanning 147,271 tokens.

It adopts an argument structure model in the
form of a tree composed of major claim (in the root
node, as the author’s standpoint on the argument
topic), claims and premises. Individual paragraphs
of the essay include arguments that may be linked
or not-linked (via relational properties) to the au-
thor’s major claim. Both "support" and "attack"
relations are taken into account.

The annotation of text segments with argu-
ment components resorted to an IOB tagging
scheme (Ramshaw and Marcus, 1999). The be-
ginning of an argument component is tagged with
Arg-B, the following tokens in that component are

180 essays, i.e 20% for testing, were annotated by three
annotators and the remaining 322, for training, by an expert.

tagged with Arg-I and non-argumentative tokens
with O. Identifying argument components consists
of tagging each token with this IOB-tagset given a
complete essay as a single input sequence. Identify-
ing clausal properties consists of classifying spans
of discourse with one of the three classes (major
claim, claim and premise) given an entire essay
as input. Following the literature, given the large
imbalance between "support" and "attack" classes,
identifying relational properties consists in classi-
fying pairs of segments just as linked or not-linked.
Statistics are displayed in Table 1.2

Task Labels Total Train Test

Comp.
Arg-B 11% 6,089 79% 21%
Arg-I 64% 93,618 80% 20%
O 25% 47,474 80% 20%

Clausal
Major Cl 12% 751 80% 20%
Claim 25% 1,506 80% 20%
Premise 63% 3,832 79% 21%

Relat. Not-Link 82% 18,340 78% 22%
Linked 18% 3,832 79% 21%

Table 1: For the tasks annotated in AAEC (rows),
the number of instances for labels and data set split
(columns) are indicated.

2.3 Literature on the AAEC tasks

Several papers on argument mining address the
AAEC tasks, although none addresses all of them,
except (Stab and Gurevych, 2017), which ad-
dressed each task with a feature-engineered SVM
(components: 0.849 macro-F1; clausal: 0.773; rela-
tional: 0.736), and an Integer Linear Programming
(ILP) algorithm (0.867, 0.826, 0.751 respectively),
that is an ensemble of the SVM models supple-
mented by rules to ensure the correct tree structure.
Table 2 presents the performance scores reported
in the literature for the AAEC tasks.

Regarding the identification of argument com-
ponents task: (Ajjour et al., 2017) implement a
BiLSTM with extensive use of features and obtain
0.885 macro-F1. (Petasis, 2019) applies several
types of neural networks for segmentation, with
the top-performing model, a BiLSTM-CRF, ob-
taining 0.901 macro-F1. (Spliethöver et al., 2019)
resorts to attention mechanisms with BiLSTMs for
unit segmentation, with the top-performing model
obtaining 0.87 weighted-F1. (Eger et al., 2017)
apply different models, including multi-task learn-
ing experiments, and report 0.908 macro-F1 for the
identification of components sub-task.

2Further descriptions of the data set and the framing of the
tasks are provided in the Appendix A.
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Comp. Clau. Rel.
SVMs (Stab and Gurevych, 2017) .849 .773 .736
ILP (Stab and Gurevych, 2017) .867 .826 .751
S2S (Potash et al., 2017) .849 .767
BL (Ajjour et al., 2017) .885
BL (Eger et al., 2017) .908
BL (Spliethöver et al., 2019) .870
BL-CRF (Petasis, 2019) .901
BL-CRF (Schulz et al., 2018) .606
BL-CNN-CRF (Chernodub et al., 2019) .471
CNN-Seq. (Gemechu and Reed, 2019) .790
BERT (Wang et al., 2020) .640
LibLINEAR (Nguyen and Litman, 2016) .753

Table 2: Comparison of different performance scores
in the literature on the AAEC tasks, in macro-F1 (ex-
cept weighted-F1 in (Spliethöver et al., 2019)), with the
top results in bold, indicating the state-of-the-art (BL
stands for BiLSTM). It should be noted that LibLIN-
EAR uses the first version of the AAEC data set.

For the identification of clausal properties task:
(Gemechu and Reed, 2019) obtain 0.79 macro-F1
for clausal properties linking premises and conclu-
sions, taking into account the similarity of target
concepts and aspects. (Chernodub et al., 2019)
applied a framework for tagging arguments and
their retrieval, including a BiLSTM-CNN-CRF
sequence tagger. A micro-F1 of 0.645 was the
top-performing performance in identifying clausal
properties (0.471 macro-F1 is the reproduction in
(Wang et al., 2020)). (Wang et al., 2020) propose
a multi-scale mining model, resorting to several
encoder-only Transformers (BERT) that mine dif-
ferent argumentation components at different tex-
tual levels, namely at the essay/paragraph/word-
level. The top-performing model obtains 0.64
macro-F1 in identifying clausal properties. (Schulz
et al., 2018) also apply a multi-task learning ap-
proach from different domains and argumentative
structures, including AAEC, with a BiLSTM-CRF,
obtaining 0.606 macro-F1 score.

Finally, as for relational properties: (Nguyen
and Litman, 2016) obtain 0.753 macro-F1 com-
bining different topic to window context features
with a linear classifier (LibLINEAR). (Potash
et al., 2017) report a 0.849 clausal and 0.767 re-
lational macro-F1 using a joint pointer architec-
ture (sequence-to-sequence model with attention),
simultaneously addressing clausal and relational
properties with several features.

3 Experimental space and settings

For the tasks that are the source of knowledge to be
transferred to argument mining models, we resorted
to a vast array of annotated data sets listed in Table

3. They cover different dimensions in terms of
linguistic and cognitive processing:3

3.1 Source tasks
Syntax - Information on syntax is typically in-
cluded in structured machine learning algorithms
that address the argument mining in a feature
engineering approach. We included part-of-
speech (POS) tagging, named entity recognition
(NER) (Hu et al., 2020) and several other tasks re-
garding linguistic properties of sentences (Conneau
and Kiela, 2018).

Semantics - Features from semantic similarity
(SS) are widely used in argument mining literature.
For example, (Boltužić and Šnajder, 2015) use SS
to identify prominent arguments in online debates,
and (Lawrence and Reed, 2015) use SS obtained
from WordNet to identify the components of argu-
mentation schemes. We included a diversity of SS
data sets, from the context-sensitive similarity task
Wic (Pilehvar and Camacho-Collados, 2019) to the
large data set obtained from Quora Question Pairs
(QQP) (Iyer et al., 2017).

Grammaticality - To address the widest spec-
trum of linguistic aspects, we included also tasks on
determining the grammatically of input sentences.
Data sets such as the Corpus of Linguistic Accept-
ability (CoLA) (Warstadt et al., 2019) were used,
that are challenging with regards this type of task.

Sentiment - Sentiment analysis has a certain
proximity to argument mining, which adds an extra
dimension to it by providing reasons for sentiments
(Habernal et al., 2014). The Stanford Sentiment
Treebank (SST) (Socher et al., 2013) was included.

Reasoning & Comprehension - Reasoning is
at the core of argumentation given it is crucial in
formulating and accepting or rejecting an argument.
We included several related tasks, as for instance
the AI2 Reasoning Challenge (ARC) (Clark et al.,
2018) in the domain of grade-school science.

Question Answering & Common sense - Ques-
tion Answering (QA) relates to argument min-
ing given linguistic similarities between the Ques-
tion/Answer and Claim/Premise pairs. Several QA

3We resorted also partly to PORTULAN CLARIN work-
bench consisting of language processing services: (Gomes
et al., 2018; Branco et al., 2020; Barreto et al., 2006; Branco
et al., 2010; Cruz et al., 2018; Veiga et al., 2011; Branco and
Henriques, 2003; Branco and Silva, 2003; Branco et al., 2011,
2022; Branco and Nunes, 2012; Silva et al., 2010; Branco
et al., 2014b; Silveira and Branco, 2012a,b; Branco and Costa,
2008; Branco et al., 2014a; Rodrigues et al., 2016; Branco and
Silva, 2006; Rodrigues et al., 2020b; Costa and Branco, 2012;
Santos et al., 2019; Neale et al., 2016; Miranda et al., 2011).
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tasks were included that address common sense
as this is closely related to argumentation, given
that several implicit premises, tacit assumptions or
inferences are to some extent regarded as common
sense—for example, (Saint-Dizier, 2017) uses QA
techniques for argument mining.

Entailment & Paraphrase - Although argument
mining and Textual Entailment (TE) are different
tasks, they are closely related given the similarity
between specific entailment properties and argu-
ment clausal and relational properties. Works such
as (Cabrio and Villata, 2012; Cocarascu and Toni,
2017) use models for TE to address argument re-
lational properties. We included several TE tasks
in different discourse domains, such as news and
forums, with STSB (Cer et al., 2017), and science,
with SciTAIL (Khot et al., 2018).

Argument mining - In addition to non argument
mining tasks, we considered also as a source task
for transfer learning the predecessor sub-task in the
argument mining pipeline, that is the identification
of components (for the clausal sub-task) and the
clausal classification (for the relational sub-task).

3.2 Computational models

In order to explore the experimental space setup
for our study, we resorted to the Transformer ar-
chitecture (Vaswani et al., 2017), which became
mainstream in NLP, surpassing several state-of-the-
art results in a wide range of tasks of all sorts (Wang
et al., 2018, 2019a). In contrast to most literature
on argument mining, where structured feature engi-
neering has been the favoured approach, a Trans-
former is a deep learning approach that obtains
linguistic knowledge by transfer learning from a
language modelling task.

In order to factorize out the impact of different
possible models and obtain results that can be com-
parable across the different data points in our ex-
perimental space, we adopt the same type of model
for all of them. Taking a look at a task closely
related to argument mining, namely common sense
reasoning, there are works in the literature (Branco
et al., 2021) that, for this task, under comparable
circumstance, have experimented with prominent
exemplars of encoder-only, decoder-only, encoder-
decoder, and neuro-symbolic types of Transform-
ers, which found that RoBERTa (Liu et al., 2019)
offers a clear advantage. Inspired by these results,
we undertook an exploratory study, repeating the
above experiments but now for sample cases of ar-

Task #Train
Syntax
PANX (Hu et al., 2020) 20K
UDPOS (Hu et al., 2020) 21K
Bigram Shift (Conneau and Kiela, 2018) 100K
Coord Inversion (Conneau and Kiela, 2018) 100K
Obj number (Conneau and Kiela, 2018) 100K
Odd Man Out (Conneau and Kiela, 2018) 100K
Past-Present (Conneau and Kiela, 2018) 100K
Sentence Length (Conneau and Kiela, 2018) 100K
Subj Number (Conneau and Kiela, 2018) 100K
Top Constituents (Conneau and Kiela, 2018) 100K
Tree Depth (Conneau and Kiela, 2018) 100K
Word Content (Conneau and Kiela, 2018) 100K
Semantics
COPA (Roemmele et al., 2011) 400
WIC (Pilehvar and Camacho-Collados, 2019) 5.4K
STSB (Cer et al., 2017) 7K
QQP (Iyer et al., 2017) 364K
Grammaticality
Coord (White et al., 2020) 458
Eos (White et al., 2020) 479
Definiteness (White et al., 2020) 508
Whwords (White et al., 2020) 585
CoLA (Warstadt et al., 2019) 8.5K
Sentiment
SST (Socher et al., 2013) 67K
Reasoning & Comprehension
MULTIRC (Khashabi et al., 2018) 456
WNLI (Levesque et al., 2012) 635
ARC (Clark et al., 2018) 2.2K
ROPES (Lin et al., 2019) 10K
ANLI (Bhagavatula et al., 2020) 169.6K
FEVER (Nie et al., 2019) 208.3K
Question Answering & Common sense
WSC (Levesque et al., 2012) 554
CommonsenseQA (Talmor et al., 2019) 9.7K
QUAIL (Rogers et al., 2020) 10.2K
BoolQ (Clark et al., 2019) 16K
PIQA (Bisk et al., 2020) 16.1K
CosmosQA (Huang et al., 2019) 25K
HellaSwag (Zellers et al., 2019) 39.9K
MRQA (Fisch et al., 2019) 104K
QNLI (Wang et al., 2018) 105K
Entailment/Paraphrase
CB (De Marneffe et al., 2019) 1.2K
RTE (Dagan et al., 2005) 2.5K
MRPC (Dolan and Brockett, 2005) 3.7K
SciTAIL (Khot et al., 2018) 27K
MNLI (Williams et al., 2018) 393K
Argument mining
Components (Stab and Gurevych, 2017) 117k
Clausal (Stab and Gurevych, 2017) 4k

Table 3: Data sets used for source tasks, clustered by
linguistic and cognitive dimensions.

gument mining from our experimental space and
arrived at the same finding. Accordingly, and given
also its accessible compute requirements and top
performance in several NLP tasks, we adopted
the off-the-shelf RoBERTa model, resorting to
RoBERTa-large variant only when the RoBERTa-
base was shown not to be enough to beat the SoTA.

We used the Jiant framework (Wang et al.,
2019b; Phang et al., 2020) and Huggingface (Wolf
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et al., 2020).The training objective for the pre-
training model was the Mask Language Modelling
(MLM), which randomly masks a word in a sen-
tence and predicts it.

To identify argument components, a token clas-
sification head classifies the input sequence x1:N
(full essay) and gives a possible output y1:N from a
class set C. To identify clausal and relational prop-
erties, a sequence classification head classifies each
input sequence x1:N and gives a possible output y
from a class set C.

3.3 Baselines

As for the baselines, we included the class ma-
jority, and the scores of a RoBERTa-base model
fine-tuned for each AAEC task. We also included
the SVMs and ILP model from (Stab and Gurevych,
2017) as a strong baseline.

3.4 Evaluation

For the evaluation of the transfer learning, we used
the final result of each main sub-task in argument
mining, which is the mean score of three runs. As
in the original AAEC work and given that classes
are unbalanced, for all tasks we used a macro-F1
averaging (Sokolova and Lapalme, 2009). We ap-
plied the Independent Samples t-Test regarding the
RoBERTa baseline and different data points ob-
tained in our experimental space to evaluate the
statistical significance (Dror et al., 2018).

4 Single-step transfer

A first batch of experiments was concerned with
single-step sequential transfer learning where the
source tasks were those listed in Table 3.

Given the large number of data points in this
experimental space, concessions were made con-
sidering the compute footprint, and we limited the
hyper-parameter search by using the recommended
values (Liu et al., 2019; Wolf et al., 2020).4

4Inspired by the STILT approach (Phang et al., 2018) we
adopted the jiant toolkit (Pruksachatkun et al., 2020), an open
source toolkit for transfer learning experiments.

For the fine-tuning of the target tasks, we performed a hyper-
parameter search with three learning rates and three seeds on
the target task development set, creating a total of 396 models.

The AAEC development set was extracted from 10% of
the original training data, thus the training data consists of
the remaining 90%. Based on the top-performing result
obtained from the development set, hyper-parameters were
determined for the test set. Further descriptions of hyper-
parameterization together with all materials to reproduce
the experiments are available at https://github.com/
nlx-group/transfer-am.

Comp. Clausal Relational
Human .886 .868 .854
SoTA - Table 2 .908 .849 .767
Baselines
RoBERTa no transfer .916 .820 .727
ILP .867 .826 .751
SVM .849 .773 .736
Majority .259 .257 .455
Syntax .906 .718 .695
PANX .917 .815 .756
UDPOS .914 .804 .743
Bigram Shift .912 .710 .743
Coord Inversion .910 .696 .735
Obj number .907 .715 .729
Odd Man Out .914 .703 .752
Past-Present .901 .713 .718
Sentence Length .885 .652 .466
Subj Number .913 .707 .746
Top Constituents .896 .708 .762*
Tree Depth .904 .674 .735
Word Content .896 .713 .455
Semantics .916 .813 .745
COPA .919* .823 .738
WIC .918 .821 .744
STSB .917 .805 .753
QQP .911 .800 .746
Grammaticality .915 .711 .753
Coord .910 .722 .754*
Eos .914 .712 .745
Definiteness .914 .705 .755
Whwords .915 .702 .758
CoLA .924 .713 .752*
Sentiment
SST .916 .820 .747*
Reasoning & Compreh .918 .811 .701
MULTIRC .919 .831 .758
WNLI .913 .788 .455
ARC .921 .820 .758
ROPES .920 .806 .748
ANLI .917 .807 .749
FEVER .914 .814 .736
QA & Common sense .918 .819 .717
WSC .919 .820 .758
CommonsenseQA .916 .819 .755*
QUAIL .921 .827 .755*
BoolQ .916 .837 .742
PIQA .914 .774 .455
CosmosQA .917 .817 .745
HellaSwag .916 .823 .746
MRQA .924 .825 .750
QNLI .916 .826 .751
Entailment/Paraphrase .919 .818 .744
CB .923* .819 .734
RTE .916 .843* .757
MRPC .916 .790 .746
SciTAIL .919 .827 .751*
MNLI .919 .812 .731
Argument mining .661
Components .843 .664
Clausal .657

Table 4: Performance in macro-F1 scores on the main
sub-tasks (columns) by different source tasks (rows).
Top score underlined, top 3 scores in bold, average score
in the same family of tasks in italics. All values found
to be statistical significant (p-value < .05) are noted with
an ∗

https://github.com/nlx-group/transfer-am
https://github.com/nlx-group/transfer-am
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4.1 Results and Analysis
Table 4 shows the results from this first batch of
experiments,5 which support the following major
empirical findings:

– The Transformer with no transfer is a very
strong baseline (off-the-self RoBERTa-base fine-
tuned to each AAEC task). It overcomes (with
0.916 in components) the SoTA (0.908) of one of
the three main tasks, and has strong scores in the
other two.
– Transfer learning is effective to leverage ar-

gument mining. This is supported by scores above
the Transformer baseline: with 0.924 (against the
baseline 0.916) in the components task; 0.843
(against 0.820) in the clausal task; and 0.762
(against 0.727) in the relational task.
– Transfer learning with a Transformer is very

competitive with respect to, or even surpass, the
SoTA. This is supported by a new SoTA of 0.924
in components (against 0.908), and by very good
scores, 0.843 and 0.762, against respectively 0.849
and 0.767, in clausal and relational.
– Source tasks whose overall cognitive com-

plexity is high and closer to the argument min-
ing task tend to be more successful in supporting
effective transfer. The overall trend is that better
results are found with source tasks for Reasoning,
Common sense and Entailment, as shown by the
respective averages and the larger number of top
scores therein. Interestingly, the top score of 0.762
for relational is obtained with a syntactic source
task, that seeks to identify Top Constituents: this is
of relevance for the relational task as this is about
relating clausal segments, which are univocally as-
sociated with their top constituents.
– A main sub-task can be a good source task

to other sub-task for effective transfer. This is
supported by the top score 0.843 in the clausal task
when the components was the source in transfer.
– A larger size of a data set for a source task,

in contrast to other sources tasks, does not nec-
essarily lead to an enhanced performance of the
transfer chain. This is illustrated, for instance, by
the case of RTE, with a small data set of only 2.5K,
but with the top score for clausal.

5 Multi-step and multi-task transfer

A second batch of experiments was concerned with
multi-step and multi-task transfer learning. The

5All scores were obtained with RoBERTa-base.

source tasks considered here were the ones with
the best results in the previous batch of experiments
with single-step transfer.

Hence, two-step transfer was experimented with,
where the typical chain encompasses the transfer
from the components task to the clausal task and
from the latter to the relational task. But we experi-
mented also with other two-step instances, where
the initial source tasks in the chain, viz. RTE, CB
and Top Constituents (TC), are none of the argu-
ment mining sub-tasks. Experiments with three-
step transfer were also undertaken, where besides
the main tasks, these other source tasks contributed
to the chain.

Finally, besides sequential transfer, also multi-
task transfer learning was experimented with, in-
volving the three argument mining sub-tasks alto-
gether, and also pairs including two of them. Mo-
tivated by these pairings of the sub-tasks, we re-
turned to one-step methodology, and for the sake
of completeness, we experimented also with every
combination of two such sub-tasks.

Comp. Clausal Relational
Human .886 .868 .854
SoTA Table 2 .908 .849 .767
Baselines
RoBERTa no transfer .916 .820 .727
ILP .867 .826 .751
SVM .849 .773 .736
Majority .259 .257 .455
Sequential
Cl ⇒ Cp .920
Re ⇒ Cp .924
RTE ⇒ Cp .916
Re ⇒ Cl ⇒ Cp .912
CB ⇒ Re ⇒ Cp .915
Cp ⇒ Cl .843*
Re ⇒ Cl .811
RTE ⇒ Cl .843*
Re ⇒ Cp ⇒ Cl .839
RTE ⇒ Cp ⇒ Cl .888*
Cp ⇒ Re .664
Cl ⇒ Re .657
RTE ⇒ Re .757
Cp ⇒ Cl ⇒ Re .781*
RTE ⇒ Cp ⇒ Cl ⇒ Re .783*
TC ⇒ Cp ⇒ Cl ⇒ Re .761
Multi-task
Cp ⇔ Cl .915 .813
Cp ⇔ Re .911 .684
Cl ⇔ Re .738 .714
Cp ⇔ Cl ⇔ Re .906 .796 .757

Table 5: Performance on the three main sub-tasks
(columns) by different transfer learning source tasks
and their chaining (rows), reported with macro-F1,
with the top results in bold, indicating new state-of-the-
art scores. Cp stands for Components, Cl for Clausal,
Re for Relational and TC for Top Constituents.
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5.1 Results and Analysis
Table 5 presents the results for this second batch of
experiments,6 supporting these major findings:

– Sequential transfer is more effective than
multi-task transfer. This is supported by the over-
all stronger scores in sequential transfer experi-
ments for similar clusters of tasks.
– Multi-step transfer can be more effective

than single-step. This is supported by the results
obtained for the relational task: with the best score
to relational in all experimental space of 0.783, this
result was supported by a three step transfer that
leveraged the relational task with the knowledge
from the other two main tasks, components and
clausal, and from RTE; and it is supported also by
the results obtained for the clausal task: with the
best score in all experimental space of 0.888, this
result was supported by a two step transfer that
leveraged the clausal task with the knowledge from
other two tasks, one from the entailment (RTE) and
the other being another main task (components).
– Source tasks that are sub-tasks in the argu-

ment mining pipeline are very successful in en-
hancing effective transfer. This is supported by
the results obtained with the transfer being orga-
nized along the default argument mining pipeline
direction, with top or very close to the top second
scores for the chains Cp ⇒ Cl and Cp ⇒ Cl ⇒
Re, with 0.843 and 0.781, respectively. But this is
supported by the results obtained with the transfer
being organized also in different directions, like
for instance, the best score to components in all
experimental space, of 0.924, with Re ⇒ Cp.
– Source tasks with the best performance for

a given main task in the single-step setting are
very successful in enhancing multi-step effective
transfer, specially for that main task. This is
supported by the results obtained with top or very
close to the top second scores for the chains RTE
⇒ Cp, with 0.916 (over the SoTA 0.908 for com-
ponents), RTE ⇒ Cp ⇒ Cl, with 0.888 (top score
for clausal, and over its SoTA 0.849), and RTE ⇒
Cp ⇒ Cl ⇒ Re, with 0.774 (over the SoTA 0.767
for relational).
– Transfer learning in the setting of an off-the-

self Transformer architecture renders new SoTA
scores for the argument mining tasks. This is
supported by the scores of 0.924 for components
(against 0.908 in previous SoTA), 0.888 for clausal

6All scores obtained with RoBERTa-base except clausal
RTE⇒Cp⇒Cl.

(against 0.849), and 0.783 for relational (against
0.767).

6 Further analysis

No correlation was found between the task scores
and the size of their training data. Using the co-
efficient of determination, .101/.002 and .001 R2

is obtained for identifying argument components,
clausal and relational properties, respectively.

We performed a manual analysis of the output
on top-performing tasks in the single-step transfer
(CB, RTE, QUAIL). We notice that shorter argu-
ments tend to be incorrectly tagged as O (outside)
while more extensive arguments tend to be incor-
rectly divided into two arguments; also, some dis-
course markers introducing arguments, as "there
is clear evidence that" or "thus it is apparent that",
tend to be wrongly labelled as the beginning and
inside of an argument segment.

Transfer learning experiments on clausal proper-
ties follow the same error pattern as the baseline,
with most errors emerging from labelling major
claims as claims, claims as premises and premises
as claims. For relation identification, linked argu-
ments were identified with higher precision and
recall than the baseline.

Transferring knowledge from argument mining
sources was examined also by extending the lan-
guage modelling phase. Despite above-baseline
scores, no statistical significance was found.7

7 Conclusions and future work

The results in this paper were obtained from a large
experimental space that permitted a systematic em-
pirical study aimed at assessing the viability of
transfer learning to leverage neural argument min-
ing with confluent knowledge. Major findings and
results are:
• The knowledge transfer enabled by the trans-

fer learning from language processing tasks that
are confluent to argument mining is an effective
approach to improve neural argument mining.
• Sequential transfer learning appears as more

effective than multi-task transfer, and multi-step
sequential transfer can achieve better performance
than single-step.
• Source language processing tasks more closely

related to argument mining and to the higher-level
cognitive capacities mobilized for argumentation
tend to provide better support.

7More details can be found in Appendix B.
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• New state of the art levels of performance were
established for the three main sub-tasks in argu-
ment mining, namely identification of argument
components, classification of components, and de-
termination of the relation among them.
• State of the art was obtained with a lean

Transformer-based neural approach that dispensed
with heavier feature and model engineering.

• There is much room for further improvements
of performance in argument mining given that the
new state of the art advanced in the present paper
was possible even when deployed on top of just an
off-the-shelf Transformer model, viz. RoBERTa,

Concomitantly, these advances open the way to
future work. On the side of the mere race for brute
force improvement of the state of the art levels of
performance, resorting to available Transformer
language models that are larger and more powerful
than RoBERTa, which was used here, can be easily
explored.

On the side of empirically motivated improve-
ments based on more thoughtful approaches, it is
possible to explore carefully articulated chains of
transfer with curriculum and meta-learning, and
also hybrid deep learning and symbolic approaches
aimed to solve transfer learning catastrophic forget-
ting among other issues.
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A AAEC Data set

The AAEC corpus (Stab and Gurevych, 2014,
2017) is a freely available collection of annotated
essays extensively adopted by the argument mining
community. For the transformation of the origi-
nal annotations to the different tasks data sets in-
puts/outputs, we followed the original work (Stab
and Gurevych, 2017).

In the literature, the three tasks, argument com-
ponent identification, clausal properties and rela-
tion properties, typically follow the original frame.

Identifying argument components is per-
formed by tagging each token with their tag from
the IOB-tagset given a complete essay as an input
sequence.

Identifying clausal properties is performed by
individually classifying a span of components of
an argument with one of the three classes (major
claim, claim and premise) given the entire essay in
context. In this task, the IOB-tags are not provided,
and the span of components consists of raw text.
As input to the model, we separated the span of
components and the full essay with a separator
token, for example, components_span <S> essay
</S>.

Identifying relational properties, in turn, is per-
formed by individually classifying two components
spans as linked or not-linked among themselves,
given the entire essay as context. In this task, no
IOB-tagset or clausal properties are provided. The
spans consist of raw text. As input to the model,
we separated the spans with separator tokens, like
in the previous sub-task.

The three tasks are handled separately during
training. There was no overlap of the test sets with

the training or development data sets. In the lit-
erature, some papers use the entire essay while
some others only the paragraph as context for de-
termining the clausal properties and the relation
properties. We followed the typical approach de-
scribed above for all base models, that is, we used
the entire essay as context for RoBERTa-base mod-
els and only the paragraph for the RoBERTa-large
model, given the large memory footprint and time
processing when providing the entire essay to a
larger model.

The original AAEC corpus also includes a fourth
task, namely, stance recognition, where relational
properties are classified with stance attributes (for
or against). In our experiments, we did not perform
this fourth task nor used the extra information pro-
vided with these stance attributes for the relational
properties task.

B Transfer during language modelling

We experimented with transferring knowledge from
argument mining related sources by extending the
pre-train, language modelling phase, rather than
expanding the fine-tuning phase (as in the first and
second batch of experiments). We experimented
with three argumentation-oriented data sets under
the Masked Language Modelling objective: a self-
supervised approach was thus adopted, with no
further labelled data resorted to during training.

In a first experiment, we extended the model
with a train set obtained from the Oscar corpus (Or-
tiz Suárez et al., 2019) by parsing 1M sentences
containing argumentative discourse markers. We
extracted all sentences that contained argumenta-
tive discourse markers from premise to conclusion
and conclusion to premise in an equal distribution.

In a second experiment, we extended the model
with an argumentation data set, the Args.me cor-
pus (Ajjour et al., 2019), containing 350k argu-
ments from forum debates. Thirdly, we extended
the model with ATOMIC, a common sense knowl-
edge base converted to raw text (Sap et al., 2019)
containing 877k inferential relations.

Each model was trained with three randomly
initialized runs, for three epochs, with a learning
rate of 1e-05 and fine-tuned for each task. The
results are in Table 6.

Results: Some performance scores of these mod-
els are higher than the respective RoBERTa base-
line, also used in the first two batches, however
without a statistically significant difference. This
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Components Clausal Relational
Baseline .916 .820 .727
Arg. markers .908 .825 .717
Args.me .915 .725 .757
ATOMIC .917 .787 .716

Table 6: Performance of models obtained by further
pre-training with data related to argument mining.

may indicate that for this type of approach to lever-
aging argument mining to be as effective as the
approach in the first two batches of experiments,
the volume of unlabelled data related to argument
mining possibly needs to be higher than the la-
belled data resorted to there by far more orders of
magnitude.


