@inproceedings{trung-etal-2022-unsupervised,
title = "Unsupervised Domain Adaptation for Text Classification via Meta Self-Paced Learning",
author = "Trung, Nghia Ngo and
Van, Linh Ngo and
Nguyen, Thien Huu",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.420/",
pages = "4741--4752",
abstract = "A shift in data distribution can have a significant impact on performance of a text classification model. Recent methods addressing unsupervised domain adaptation for textual tasks typically extracted domain-invariant representations through balancing between multiple objectives to align feature spaces between source and target domains. While effective, these methods induce various new domain-sensitive hyperparameters, thus are impractical as large-scale language models are drastically growing bigger to achieve optimal performance. To this end, we propose to leverage meta-learning framework to train a neural network-based self-paced learning procedure in an end-to-end manner. Our method, called Meta Self-Paced Domain Adaption (MSP-DA), follows a novel but intuitive domain-shift variation of cluster assumption to derive the meta train-test dataset split based on the self-pacing difficulties of source domain`s examples. As a result, MSP-DA effectively leverages self-training and self-tuning domain-specific hyperparameters simultaneously throughout the learning process. Extensive experiments demonstrate our framework substantially improves performance on target domains, surpassing state-of-the-art approaches. Detailed analyses validate our method and provide insight into how each domain affects the learned hyperparameters."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="trung-etal-2022-unsupervised">
<titleInfo>
<title>Unsupervised Domain Adaptation for Text Classification via Meta Self-Paced Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nghia</namePart>
<namePart type="given">Ngo</namePart>
<namePart type="family">Trung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linh</namePart>
<namePart type="given">Ngo</namePart>
<namePart type="family">Van</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thien</namePart>
<namePart type="given">Huu</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A shift in data distribution can have a significant impact on performance of a text classification model. Recent methods addressing unsupervised domain adaptation for textual tasks typically extracted domain-invariant representations through balancing between multiple objectives to align feature spaces between source and target domains. While effective, these methods induce various new domain-sensitive hyperparameters, thus are impractical as large-scale language models are drastically growing bigger to achieve optimal performance. To this end, we propose to leverage meta-learning framework to train a neural network-based self-paced learning procedure in an end-to-end manner. Our method, called Meta Self-Paced Domain Adaption (MSP-DA), follows a novel but intuitive domain-shift variation of cluster assumption to derive the meta train-test dataset split based on the self-pacing difficulties of source domain‘s examples. As a result, MSP-DA effectively leverages self-training and self-tuning domain-specific hyperparameters simultaneously throughout the learning process. Extensive experiments demonstrate our framework substantially improves performance on target domains, surpassing state-of-the-art approaches. Detailed analyses validate our method and provide insight into how each domain affects the learned hyperparameters.</abstract>
<identifier type="citekey">trung-etal-2022-unsupervised</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.420/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>4741</start>
<end>4752</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Domain Adaptation for Text Classification via Meta Self-Paced Learning
%A Trung, Nghia Ngo
%A Van, Linh Ngo
%A Nguyen, Thien Huu
%Y Calzolari, Nicoletta
%Y Huang, Chu-Ren
%Y Kim, Hansaem
%Y Pustejovsky, James
%Y Wanner, Leo
%Y Choi, Key-Sun
%Y Ryu, Pum-Mo
%Y Chen, Hsin-Hsi
%Y Donatelli, Lucia
%Y Ji, Heng
%Y Kurohashi, Sadao
%Y Paggio, Patrizia
%Y Xue, Nianwen
%Y Kim, Seokhwan
%Y Hahm, Younggyun
%Y He, Zhong
%Y Lee, Tony Kyungil
%Y Santus, Enrico
%Y Bond, Francis
%Y Na, Seung-Hoon
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F trung-etal-2022-unsupervised
%X A shift in data distribution can have a significant impact on performance of a text classification model. Recent methods addressing unsupervised domain adaptation for textual tasks typically extracted domain-invariant representations through balancing between multiple objectives to align feature spaces between source and target domains. While effective, these methods induce various new domain-sensitive hyperparameters, thus are impractical as large-scale language models are drastically growing bigger to achieve optimal performance. To this end, we propose to leverage meta-learning framework to train a neural network-based self-paced learning procedure in an end-to-end manner. Our method, called Meta Self-Paced Domain Adaption (MSP-DA), follows a novel but intuitive domain-shift variation of cluster assumption to derive the meta train-test dataset split based on the self-pacing difficulties of source domain‘s examples. As a result, MSP-DA effectively leverages self-training and self-tuning domain-specific hyperparameters simultaneously throughout the learning process. Extensive experiments demonstrate our framework substantially improves performance on target domains, surpassing state-of-the-art approaches. Detailed analyses validate our method and provide insight into how each domain affects the learned hyperparameters.
%U https://aclanthology.org/2022.coling-1.420/
%P 4741-4752
Markdown (Informal)
[Unsupervised Domain Adaptation for Text Classification via Meta Self-Paced Learning](https://aclanthology.org/2022.coling-1.420/) (Trung et al., COLING 2022)
ACL