
Proceedings of the 29th International Conference on Computational Linguistics, pages 266–284
October 12–17, 2022.

266

Dynamic Dialogue Policy for Continual Reinforcement Learning

Christian Geishauser, Carel van Niekerk, Hsien-Chin Lin,
Nurul Lubis, Michael Heck, Shutong Feng, Milica Gašić

Heinrich Heine University Düsseldorf, Germany
{geishaus, niekerk, linh, lubis, heckmi, fengs, gasic}@hhu.de

Abstract

Continual learning is one of the key compo-
nents of human learning and a necessary re-
quirement of artificial intelligence. As dialogue
can potentially span infinitely many topics and
tasks, a task-oriented dialogue system must
have the capability to continually learn, dynam-
ically adapting to new challenges while preserv-
ing the knowledge it already acquired. Despite
the importance, continual reinforcement learn-
ing of the dialogue policy has remained largely
unaddressed. The lack of a framework with
training protocols, baseline models and suit-
able metrics, has so far hindered research in
this direction. In this work we fill precisely
this gap, enabling research in dialogue policy
optimisation to go from static to dynamic learn-
ing. We provide a continual learning algorithm,
baseline architectures and metrics for assessing
continual learning models. Moreover, we pro-
pose the dynamic dialogue policy transformer
(DDPT), a novel dynamic architecture that can
integrate new knowledge seamlessly, is capable
of handling large state spaces and obtains sig-
nificant zero-shot performance when being ex-
posed to unseen domains, without any growth
in network parameter size. We validate the
strengths of DDPT in simulation with two user
simulators as well as with humans.

1 Introduction

Task-oriented dialogue systems are characterised
by an underlying task or a goal that needs to be
achieved during the conversation, such as manag-
ing a schedule or finding and booking a restau-
rant. Modular dialogue systems have a tracking
component that maintains information about the
dialogue in a belief state, and a planning compo-
nent that models the underlying policy, i.e., the
selection of actions (Levin and Pieraccini, 1997;
Roy et al., 2000; Williams and Young, 2007; Zhang
et al., 2020b). The spectrum of what a task-oriented
dialogue system can understand and talk about is

defined by an ontology. The ontology defines do-
mains such as restaurants or hotels, slots within a
domain such as the area or price, and values that
a slot can take, such as the area being west and
the price being expensive. As dialogue systems
become more popular and powerful, they should
not be restricted by a static ontology. Instead, they
should be dynamic and grow as the ontology grows,
allowing them to comprehend new information and
talk about new topics – just like humans do.

In the literature, this is referred to as continual
learning (Biesialska et al., 2020; Khetarpal et al.,
2020a; Hadsell et al., 2020). A learner is typi-
cally exposed to a sequence of tasks that have to be
learned in a sequential order. When faced with a
new task, the learner should leverage its past knowl-
edge (forward transfer) and be flexible enough to
rapidly learn how to solve the new task (maintain
plasticity). On the other hand, we must ensure
that the learner does not forget how to solve pre-
vious tasks while learning the new one (prevent
catastrophic forgetting). Rather, a learner should
actually improve its behaviour on previous tasks
after learning a new task, if possible (backward
transfer).

Despite progress in continual learning (Lange
et al., 2019; Parisi et al., 2019; Biesialska et al.,
2020; Khetarpal et al., 2020a; Hadsell et al., 2020),
there is – to the best of our knowledge – no work
that addresses continual reinforcement learning
(continual RL) of the dialogue policy, even though
the policy constitutes a key component of dialogue
systems. Research in this direction is hindered
by the lack of a framework that provides suitable
models, evaluation metrics and training protocols.

In modular task-oriented dialogue systems the
input to the dialogue policy can be modelled in
many different ways (Lipton et al., 2018; Weisz
et al., 2018; Takanobu et al., 2019; Wang et al.,
2015; Casanueva et al., 2018; Xu et al., 2020). An
appropriate choice of state representation is key

267

to the success of any form of RL (Madureira and
Schlangen, 2020). In continual RL for the dialogue
policy, this choice is even more essential. Differ-
ent dialogue domains typically share structure and
behaviour that should be reflected in the state and
action representations. The architecture needs to
exploit such common structure, to the benefit of any
algorithm applied to the model. In this work, we
therefore centre our attention on this architecture.
We contribute 1

• the first framework for continual RL to op-
timise the dialogue policy of a task-oriented
dialogue system, two baseline architectures,
an implementation of the state-of-the-art con-
tinual RL algorithm (Rolnick et al., 2018)
and continual learning metrics for evaluation
based on Powers et al. (2021), and

• a further, more sophisticated, new continual
learning architecture based on the transformer
encoder-decoder (Vaswani et al., 2017) and
description embeddings, which we call dy-
namic dialogue policy transformer (DDPT).
Our architecture can seamlessly integrate new
information, has significant zero-shot perfor-
mance and can cope with large state spaces
that naturally arise from a growing number of
domains while maintaining a fixed number of
network parameters.

2 Related Work

2.1 Continual Learning in Task-oriented
Dialogue Systems

Despite progress in continual learning, task-
oriented dialogue systems have been barely
touched by the topic. Lee (2017) proposed a task-
independent neural architecture with an action se-
lector. The action selector is a ranking model that
calculates similarity between state and candidate
actions. Other works concentrated on dialogue
state tracking (Wu et al., 2019) or natural language
generation (Mi et al., 2020; Geng et al., 2021).
Geng et al. (2021) proposed a network pruning and
expanding strategy for natural language generation.
Madotto et al. (2021) introduced an architecture
called AdapterCL and trained it in a supervised
fashion for intent prediction, state tracking, genera-
tion and end-to-end learning. However, that work
focused on preventing catastrophic forgetting and

1https://doi.org/10.5281/zenodo.
7075192

did not address the dialogue policy. As opposed
to the above-mentioned approaches, we consider
continual RL to optimise a dialogue policy.

2.2 Dialogue Policy State Representation

In the absence of works that directly address con-
tinual learning for the dialogue policy, it is worth
looking at approaches that allow dialogue policy
adaptation to new domains and examining them in
the context of continual learning requirements.

The first group among these methods introduces
new parameters to the model when the domain of
operation changes. The approaches directly vec-
torise the belief state, hence the size of the input
vector depends on the domain (as different domains
for instance have different numbers of slots) (Su
et al., 2016; Lipton et al., 2018; Weisz et al., 2018;
Takanobu et al., 2019; Zhu et al., 2020). In the con-
text of continual learning such approaches would
likely preserve the plasticity of the underlying RL
algorithm but would score poorly on forward and
backward transfer.

Another group of methods utilises a hand-coded
domain-independent feature set that allows the pol-
icy to be transferred to different domains (Wang
et al., 2015; Casanueva et al., 2018; Chen et al.,
2018; Chen et al., 2020; Lin et al., 2021). This is
certainly more promising for continual learning, es-
pecially if the requirement is to keep the number of
parameters bounded. However, while such models
might score well on forward and backward transfer,
it is possible that the plasticity of the underlying RL
algorithm is degraded. Moreover, developing such
features requires manual work and it is unclear if
they would be adequate for any domain.

Xu et al. (2020) go a step further in that direc-
tion. They propose the usage of embeddings for
domains, intents, slots and values in order to allow
cross-domain transfer. To deal with the problem
of a growing state space with an increased num-
ber of domains, they propose a simple averaging
mechanism. However, as the number of domains
becomes larger, averaging will likely result in in-
formation loss. Moreover, their architecture still
largely depends on predefined feature categories.

A third option is to exploit similarities between
different domains while learning about a new do-
main. Gašić et al. (2015) use a committee of Gaus-
sian processes together with designed kernel func-
tions in order to define these similarities and there-
fore allow domain extension and training on new

https://doi.org/10.5281/zenodo.7075192
https://doi.org/10.5281/zenodo.7075192

268

Information Value

Hotel - area north

Hotel - pricerange cheap

Hotel - request - phone ?

+ Train - destination None

+ Train - database results 15

… …

Actions

Hotel - request - area

Hotel - inform- parking

Hotel - offerbook

+ Train - book

+ Train - recommend - id

…

In
tr

od
uc

in
g

ne
w

 d
om

ai
ns

/t
as

ks

Train

Grows as more domains/tasks are introduced

Figure 1: The amount of information that the dialogue
agent must comprehend and the possible actions it can
take increases as new domains/tasks are introduced.

domains. A similarity-based approach could in
principle score well on all three continual learn-
ing measures. However, it is desirable to minimise
the amount of manual work needed to facilitate
continual learning.

2.3 Dialogue Policy Action Prediction
In the realm of domain adaptation, works assume a
fixed number of actions that are slot-independent,
and focus on the inclusion of slot-dependent ac-
tions when the domain changes (Wang et al., 2015;
Casanueva et al., 2018; Chen et al., 2018; Chen
et al., 2020; Lin et al., 2021). This allows seam-
less addition of new slots, but the integration of
new intents or slot-independent actions requires an
expansion of the model.

Works that allow new actions to be added to
the action set compare the encoded state and ac-
tion embeddings with each other (Lee, 2017; Xu
et al., 2020; Vlasov et al., 2019), suggesting that
exploiting similarities is key not only for state rep-
resentations but also for action prediction.

With multi-domain dialogues it becomes neces-
sary to be able to produce more than one action
in a turn, which is why researchers started to use
recurrent neural network (RNN) models to produce
a sequence of actions in a single turn (Shu et al.,
2019; Zhang et al., 2020a). RNNs are known how-
ever to only provide a limited context dependency.

3 Background

3.1 Continual Reinforcement Learning
In typical RL scenarios, an agent interacts with a
stationary MDP M = ⟨S,A, p, p0, r⟩, where S
and A constitute the state and action space of the
agent, p(s′|s, a) models the probability of transi-
tioning to state s′ after executing action a in state
s, and p0(s) is the probability of starting in state s.

The reward function r defines the observed reward
in every time-step. The goal is to maximise the
cumulative sum of rewards in that MDP.

In contrast, continual reinforcement learning
focuses on non-stationary or changing environ-
ments (Hadsell et al., 2020). Generally speaking,
the agent faces a sequence of Markov decision
processes {Mz}∞z=1 (Lecarpentier and Rachelson,
2019; Chandak et al., 2020; Khetarpal et al., 2020b)
with possibly different transition dynamics, reward
functions or even state or action spaces. The vari-
able z is often referred to as a task (or context) (Cac-
cia et al., 2020; Normandin et al., 2021). While
the MDP can change from episode to episode, it is
often assumed that the agent is exposed to a fixed
MDP for a number of episodes and then switches
to the next MDP. Once a new task (or MDP) is ob-
served, the old task is either never observed again
or only periodically (Rolnick et al., 2018; Powers
et al., 2021). The goal is to retain performance
on all seen tasks. This requires the model to pre-
vent catastrophic forgetting of old tasks while at
the same time adapting to new tasks.

A state-of-the art method for continual RL that
uses a replay memory is CLEAR (Rolnick et al.,
2018). CLEAR manages the trade-off between
preventing catastrophic forgetting and fast adapta-
tion through an on-policy update step as well as an
off-policy update step. The on-policy step is sup-
posed to adapt the policy to the recent task by using
the most recent dialogues while the off-policy step
should lead to retaining performance on old tasks
by updating on old experiences from the replay
buffer. The off-policy update is further regularized
such that policy and critic outputs are close to the
historical prediction. More information on CLEAR
is provided in the Appendix A.1.

In the context of dialogue, a task usually refers
to a domain as defined in Madotto et al. (2021) and
we will use these two terms interchangeably. As an
example setting, a dialogue system is tasked with
fulfilling user goals concerning hotel information
and booking and after some amount of time with
fulfilling goals related to train bookings. In terms
of MDPs, the dialogue system first faces the MDP
Mz1 , z1 = hotel, for some amount of dialogues
and afterwards Mz2 , z2 = train. Once the train
domain is introduced, the state and action space
grows (as a result of the growing ontology) as de-
picted exemplarily in Figure 1. As a consequence,
the model needs to understand new topics such as

269

Info 1 Info 10...

 0 1 ... 0

MLP Encoder

 1 0 ... 0

Hotel Taxi
new domain appears

new network
weights

Info 1

domain
intent
slot

value
embeddings

category 1

average over
domains

user
hotel

inform
area

MLP Encoder

category 2 category 3

Info 2
user
taxi

request
car

...

same feature category

Info 1

...

user
hotel

inform
area

description

Linear

Transformer Encoder

Information from
inactive domain

frozen
RoBERTa

model

value

Info 2
user
taxi

request
car

description
value

Info 10

user goal
train
time

Linear Linear

(a) Binary representation (Bin) (b) Semantic features (Sem) (c) Descriptions and values (DDPT)

Figure 2: State representation for different architectures. (a) Bin uses a flattened dialogue state with binary features,
where the input size grows and new network weights need to be added when facing a new domain. (b) Sem uses
the idea from Xu et al. (2020), using trainable embeddings for domain, intent, slot and value. The information
corresponding to a specific feature category is then averaged over domains in order to be independent on the number
of domains. (c) Our proposed DDPT model uses descriptions for every information which are embedded using a
pretrained language model. The embedded description together with a value for the information is then fed into a
linear layer and a transformer encoder.

the destination of the train and select new actions
such as booking a train. In addition, the probability
distributions p and p0 of Mz2 are different com-
pared to Mz1 since the probability that the user
talks about hotels should be close to 0 while the
probability that the agent’s states contain informa-
tion related to trains is close to 1.0.

3.2 Dialogue Policy in Modular Systems

In modular task-oriented dialogue systems, the de-
cision of a dialogue policy is commonly based on
the hidden information state of the dialogue system.
This hidden information state, according to Young
et al. (2007), should consist of the following infor-
mation: the predicted user action, the predicted user
goal and a representation of the dialogue history.
For reactive behaviour by the policy, the user action
is important as it includes information related to
requests made by the user. The predicted user goal
summarises the current goal of the user, including
specified constraints. Lastly, the dialogue history
representation captures the relevant information
mentioned in the dialogue history, such as the lat-
est system action. The state can also include the
likelihood of the predicted acts, goal and dialogue
history in the form of confidence scores. More-
over, the state often contains information about the
database, for instance the number of entities that
are available given the current predicted user goal.

Each domain that the system can talk about is
either active, meaning that it has already been men-

tioned by the user, or inactive. The active domains
can be derived from the user acts, from the user
goal or tracked directly (van Niekerk et al., 2021).

Finally, the policy is supposed to take actions.
As in (Shu et al., 2019; Zhang et al., 2020a), each
action can be represented as a sequence of tuples
(domain, intent , slot). For instance, an action
could be that the system requests the desired arrival
time of a train or asks for executing a payment.

4 Dynamic Dialogue Policy Transformer

Our goal is to build a model that can talk about a
potentially very large number of domains and is
able to deal with new domains and domain exten-
sions seamlessly without requiring any architec-
tural changes. In particular, the number of model
parameters should remain fixed. This is challeng-
ing since new domains require understanding of
previously unseen information and the ability to
talk about new topics.

Our approach is inspired by the way an employee
would explain and act upon a novel task: 1) de-
scribe the information that can be used and the
actions that can be taken in natural language, 2)
restrict the focus to the information that is impor-
tant for solving the task at hand, 3) when an action
needs to be taken, this action is based on the in-
formation that was attended to (e.g. for the action
to request the area, one would put attention on the
information whether the area is already given). We
propose an architecture that uses the transformer

270

encoder with information embeddings (Section 4.1
and Figure 2(c)) to fulfill 1) and 2) and the trans-
former decoder that leverages the domain gate (Sec-
tion 4.2, 4.3 and Figure 3) to fulfill 3), which we
call dynamic dialogue policy transformer (DDPT).

4.1 State Representation

Recall from Section 3.2 that the agent is provided
with information on various concepts f for domain
df : the user goal (domain-slot pairs), the user ac-
tion (intents) and the dialogue history (system in-
tents and database results). We assume that the
agent has access to an external dictionary provid-
ing a natural language description descrf of each
of these, e.g. “area of the hotel” or “number of ho-
tel database results”, which is common in dialogue
state tracking (Rastogi et al., 2020; van Niekerk
et al., 2021; Lee et al., 2021). See Appendix A.5
for the full list of descriptions. During a dialogue,
the dialogue state or belief tracker assigns numeri-
cal values vf , e.g. confidence scores for user goals
or the number of data base results, etc. For every
concept f we define the information embedding

einfof = Lin
([
LM(descrf),Lin(vf)

])
∈ Rh

where LM denotes applying a language model such
as RoBERTa (Liu et al., 2019) and averaging of the
token embeddings, and Lin denotes a linear layer.
einfof represents information in a high-dimensional
vector space. Intuitively, every information can be
thought of as a node in a graph. The list of infor-
mation embeddings are the input to a transformer
encoder (Vaswani et al., 2017). The attention mech-
anism allows the agent to decide for every informa-
tion embedding einfof on which other embeddings
einfog it can put its attention. With a growing num-
ber of domains that the system can talk about, the
number of information embeddings will increase,
making it more difficult to handle the growing state
space. However, we observe that only information
that is related to active domains is important at the
current point in time. Therefore, we prohibit the
information embeddings from attending to infor-
mation that is related to inactive domains in order
to avoid the issue of growing state spaces. While
the actual state space may be extremely large due
to hundreds of domains, the effective state space
remains small, making it possible to handle a very
large number of domains. Our proposed state en-
coder is depicted in Figure 2(c).

In this way, the state representation meets the

Transformer Block

"domain"

+

Domain
Embeddings

Probability distribution
over domains

current
domains

sample
frozen

RoBERTa
model

"start"

Scalar product Domain gateLinear

Transformer Block

+

Probability distribution
over intents

sample

"intent"

Scalar product Linear

Intent
Embeddings

frozen
RoBERTa

model

Transformer Block

+

sample

"slot"

...

Probability distribution
over slots

Figure 3: Proposed action prediction in DDPT using a
transformer decoder. In every decoding step, a token
embedding for domain, intent or slot informs the model
what needs to be predicted and the previous output is
fed into the decoder. In case of domain prediction, we
propose a domain gate that decides whether to choose a
domain that the user currently talks about.

following demands: 1) new concepts can be un-
derstood and incorporated seamlessly into the state
without a growth in network parameters, as long
as they are descriptive; 2) the description embed-
dings from a language model allow forward trans-
fer by exploiting similarities and common structure
among tasks; 3) the value vf allows numerical in-
formation such as confidence scores or other mea-
sures of model uncertainty to be included; 4) the
state space will not be unreasonably large as infor-
mation for inactive domains is masked.

4.2 Action Prediction
Similar to existing work (Shu et al., 2019; Zhang
et al., 2020a) we separately predict domains, in-
tents and slots for action prediction. We define a
domain set D, intent set I and slot set S as follows.
The domain set D consists of all domains the model
has seen so far plus an additional stop domain. The
intent set I and slot set S consist of all intents and
slots we can use for actions, respectively. Every
domain, intent and slot has an embedding vector,
which we obtain by feeding the token of the do-
main, intent or slot into our pretrained language
model. The embedding vectors are then fed into a
linear layer that produces vectors of size Rh. We
thus obtain domain, intent and slot embeddings
bd ∀d ∈ D, bi ∀i ∈ I, and bs ∀s ∈ S.

The policy first chooses a domain. Then,
based on the domain, it picks an intent from
the list of intents that are possible for that do-
main. Lastly, it picks an adequate slot from
the set of possible slots for that domain and in-
tent. This process repeats until the policy selects

271

the stop domain. This will lead to a sequence
(domainm, intentm, slotm)

n
m=0. We leverage a

transformer decoder (Vaswani et al., 2017), the
aforementioned embeddings for domains, intents
and slots and similarity matching to produce the
sequence. In every decoding step t the input to the
transformer is bt−1 + lt, where bt−1 is the embed-
ding of the previous prediction and lt is a token
embedding for token domain, intent or slot that
indicates what needs to be predicted in turn t. b−1

is an embedding of a start token.
If we need to predict a domain in step t, we

calculate the scalar product between the decoder
output vector ot and the different domain embed-
dings bd and apply the softmax function to obtain
a probability distribution softmax[ot ⊙ bd, d ∈ D]
over domains from which we can sample. Intent
and slot prediction is analogous. In order to guar-
antee exploration during training and variability
during evaluation, we sample from the distribu-
tions. While it is important to explore domains
during training, during evaluation the domain to
choose should be clear. We hence take the domain
with the highest probability during evaluation.

As in the state representation, the embeddings
using a pretrained language model allow under-
standing of new concepts (such as a new intent) im-
mediately, which facilitates zero-shot performance.
We do not fine-tune any embedding that is produced
by the language model.

4.3 Domain Gate

If the policy is exposed to a new unseen domain,
the most important point to obtain any zero-shot
performance is that the policy predicts the correct
domain to talk about. If we only use similarity
matching of domain embeddings, the policy will
likely predict domains it already knows. In dia-
logue state tracking we often observe that simi-
larity matching approaches predict values they al-
ready know when faced with new unseen values,
which leads to poor zero-shot generalisation (Ras-
togi et al., 2018). To circumvent that, we propose
the domain gate. Let Dcurr be the set of domains
that the user talks about in the current turn. In
every decoding step t where a domain needs to
be predicted, the domain gate obtains ot as input
and predicts the probability pcurr of using a do-
main from Dcurr. When the policy needs to pre-
dict a domain in step t, it now uses the probability
distribution given by pcurr · softmax[ot ⊙ bd, d ∈

Dcurr] + (1− pcurr) · softmax[ot ⊙ bd, d ̸∈ Dcurr].
In this process, the policy does not have to pre-

dict the new domain immediately but can abstractly
first decide whether it wants to use a domain that
the user talks about at the moment. The decoding
process is depicted in Figure 3.

5 Experimental Setup

5.1 Metrics
We follow the setup recently proposed by Pow-
ers et al. (2021), which assumes that our N
tasks/domains z1, ..., zN are represented sequen-
tially and each task zi is assigned a budget kzi . We
can cycle through the tasks M times, leading to a
sequence of tasks x1, ..., xN ·M . The cycling over
tasks defines a more realistic setting than only see-
ing a task once in the agent’s lifetime, in particular
in dialogue systems where new domains are intro-
duced but rarely removed.
Continual evaluation: We evaluate performance
on all tasks periodically during training. We show
the performance for every domain separately to
have an in-depth evaluation and the average perfor-
mance over domains for an overall trend whether
the approaches continually improve.
Forgetting: We follow the definition proposed by
Chaudhry et al. (2018) and Powers et al. (2021).
Let mi,k be a metric achieved on task zi after train-
ing on task xk, such as the average return or the
average dialogue success. For seeds s, tasks zi and
xj , where i < j, we define

Fi,j =
1

s

∑
s

max
k∈[0,j−1]

{mi,k −mi,j}. (1)

Fi,j compares the maximum performance achieved
on task zi before training on task xj to the perfor-
mance for zi after training on task xj . If Fi,j is
positive, the agent has become worse at past task
zi after training on task xj , indicating forgetting.
When Fi,j is negative, the agent has become better
at task zi, indicating backward transfer. We define
Fi as the average over the Fi,j and F as the aver-
age over Fi.
(Zero-Shot) Forward transfer: For seeds s, tasks
zi and zj , where j < i, we define

Zi,j =
1

s

∑
s

mi,j . (2)

We do not substract initial performance as in Pow-
ers et al. (2021) as we are interested in the absolute

272

performance telling us how well we do on task zi
after training on a task zj . We define Zi as the
average over the Zi,j and Z as the average over Zi.

5.2 Baselines

We implemented two baselines in order to com-
pare against our proposed DDPT architecture. We
do not include a baseline based on expert-defined
domain-independent features (Wang et al., 2015) as
this requires a significant amount of hand-coding
and suffers from scalabilility issues.

5.2.1 Baseline State Representations
We will abbreviate the following baselines with
Bin and Sem that indicate their characteristic way
of state representation.

Bin: The first baseline uses a flattened dialogue
state for the state representation with binary values
for every information which is the most common
way (Takanobu et al., 2019; Zhu et al., 2020; Weisz
et al., 2018). If a new domain d appears, the in-
put vector must be enlarged in order to incorporate
the information from d and new network param-
eters need to be initialised. The state encoding
can be seen in Figure 2(a). This baseline serves
as a representative of methods where new domains
necessitate additional parameters.

Sem: The second baseline implements the idea
from Xu et al. (2020), which uses trainable embed-
dings for domains, intents, slots and values that can
capture semantic meaning and allow cross-domain
transfer. Using trainable embeddings, one repre-
sentation is calculated for every feature in every
feature category (such as user-act, user goal, etc.)
in every domain. The feature representations in a
category are then averaged over domains to obtain
a final representation. More information can be
found in Appendix A.4. This baseline serves as a
representative of methods where feature represen-
tations remain fixed.

5.2.2 Action Prediction for Baselines
Unlike DDPT, which uses a transformer for ac-
tion prediction, the baselines Bin and Sem use an
RNN model for action prediction (Shu et al., 2019;
Zhang et al., 2020a). This model uses the decoding
process explained in Section 4.2 with the exception
that the baselines use trainable embeddings for do-
main, intent and slot (randomly initialised) instead
of using embeddings from a pretrained language
model as DDPT does. Moreover, they do not use
the proposed domain gate.

5.3 Setup
We use ConvLab-2 (Zhu et al., 2020) as the back-
bone of our implementation. We take five different
tasks from the MultiWOZ dataset (Budzianowski
et al., 2018) which are hotel, restaurant, train, taxi
and attraction. Hotel, restaurant and train are more
difficult compared to attraction and taxi as they
require the agent to do bookings in addition to
providing information about requested slots. We
exclude police and hospital from the task list as
they are trivial. We use the rule-based dialogue
state tracker and the rule-based user simulator pro-
vided in ConvLab-2 (Zhu et al., 2020) to conduct
our experiments. Typically, the reward provided
is −1 in every turn to encourage efficiency, and a
reward of 80 or −40 for dialogue success or failure.
A dialogue is successful if the system provided the
requested information to the user and booked the
correct entities (if possible). We stick to the above
reward formulation with one exception: Instead of
the turn level reward of −1, we propose to use infor-
mation overload (Roetzel, 2019). The reason is that
dialogue policies tend to over-generate actions, es-
pecially if they are trained from scratch. While the
user simulator ignores the unnecessary actions, real
humans do not. We define information overload
for an action (domainm, intentm, slotm)

n
m=1 as

rio = −ρ · n, where ρ ∈ N defines the degree of
the penalty. Information overload generalizes the
reward of −1 in single action scenarios. We use
ρ = 3 in the experiments.

We train each of the three architectures using
CLEAR (Rolnick et al., 2018). We set the replay
buffer capacity to 5000 dialogues and use reservoir
sampling (Isele and Cosgun, 2018) when the buffer
is full. We assign a budget of 2000 dialogues to
restaurant, hotel and train and 1000 to attraction
and taxi and cycle through these tasks two times,
resulting in 16000 training dialogues in total. Since
task ordering is still an open area of research (Jiang
et al., 2020), we test three different permutations
so that our results do not depend on a specific or-
der. The domain orders we use are 1) easy-to-hard:
attraction, taxi, train, restaurant, hotel 2) hard-to-
easy: hotel, restaurant, train, taxi, attraction and 3)
mixed: restaurant, attraction, hotel, taxi, train.

6 Results

6.1 Continual Evaluation
We show performance in terms of average return
for all three task orders in Figure 4(a)-(c). The plots

273

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50
Av

er
ag

e
re

tu
rn

Average performance across domains

Bin
Sem
DDPT
Gold

(a) easy-to-hard

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn

Average performance across domains

Bin
Sem
DDPT
Gold

(b) hard-to-easy

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn

Average performance across domains

Bin
Sem
DDPT
Gold

(c) mixed

Figure 4: Training Bin, Sem and DDPT (ours) using CLEAR on three different domain orders, each with 5 different
seeds, by interacting with the rule-based user simulator. Each model is evaluated every 500 training dialogues on
100 dialogues per domain. The plots show the average return, where performance is averaged over domains. The
vertical line at 8000 dialogues indicates the start of cycle 2. The shaded area represents standard deviation. Gold
serves as an upper bound.

show the performance averaged over domains. We
refer to Appendix A.8 for in-depth evaluations for
each individual domain. The horizontal line Gold
denotes an upper limit for the models that was ob-
tained by training a Bin model separately on each
domain until convergence. We can observe that
DDPT outperforms the baselines regardless of task
order, almost reaching the upper bound. We will
see in Section 6.2 that the baselines suffer more
from forgetting compared to DDPT, such that train-
ing on a new domain reduces performance on pre-
vious domains. We suspect that this contributes to
the lower final performance of the baselines. More-
over, we can observe that the final performance
of DDPT barely depends on a specific task order.
Nevertheless, we can see that training starts off
faster in easy-to-hard order, which shows that be-
haviour learned for attraction transfers well to other
domains. Lastly, the second training cycle is nec-
essary for increasing performance of the models.
We note that even though it looks like the baselines
don’t learn at all in the first round, they do learn
but tend to forget previous knowledge. This can be
observed in detail in Appendix A.8.

6.2 Forward Transfer and Forgetting

We calculated forward and forgetting metrics as
explained in Section 5.1. Table 1 shows success
rates instead of average return because success is
easier to interpret. We can see for every model
the summary statistics F and Z measuring average
forgetting and forward transfer, respectively. To
obtain lower bounds we added forward and forget-
ting of a random model that is initialised randomly
again every time it observes a domain.

Table 1 reveals that DDPT outperforms the base-
lines significantly in terms of absolute numbers
and also relative numbers compared to the random
performance. As expected, Bin shows almost no
zero-shot performance improvement compared to
the random model, whereas Sem obtains slight im-
provement. DDPT shows large forward transfer
capabilities and strong robustness against forget-
ting. We attribute this to the frozen description and
action embeddings stemming from the language
model and the domain gate. The language model
allows us to interpret new information and actions
immediately, enabling the model to draw connec-
tions between learned tasks and new ones. At the
same time, frozen embeddings are robust to forget-
ting. The domain gate allows the model to choose
the domain more abstractly without initial explo-
ration due to the decision between current or non-
current domains, which facilitates zero-shot per-
formance. Moreover, the baselines need to make a
hard decision between domains (balancing between
choosing a domain we learn about at the moment
and old domains), whereas the domain decision for
DDPT is abstracted through the domain gate, lead-
ing to robustness against forgetting. Both baselines
perform substantially better than the lower bound,
suggesting that these are non-trivial baselines.

6.3 Benefits of Domain Gate

In order to analyse the contribution of the domain
gate to the forward capabilities of DDPT, we train
a DDPT model without domain gate on the easy-
to-hard order, where DDPT showed the highest
forward transfer. From Table 2 we can observe that
performance drops significantly for all domains if

274

Easy-to-hard Hard-to-easy Mixed order Random
Model F ↓ Z ↑ F ↓ Z ↑ F ↓ Z ↑ F ↓ Z ↑

Bin 0.14 0.39 0.14 0.45 0.14 0.38 0.43 0.39
Sem 0.20 0.39 0.17 0.37 0.18 0.29 0.43 0.26

DDPT 0.01 0.73 0.02 0.68 0.03 0.57 0.43 0.34

Table 1: Showing summary statistics in terms of success
for forgetting F (ranging between -1 and 1, the lower
the better) and forward transfer Z (ranging between 0
and 1, the higher the better).

Taxi Train Restaurant Hotel Z ↑
DDPT 0.90 0.76 0.73 0.53 0.73

DDPT w/o domain gate 0.68 0.19 0.57 0.28 0.43

Table 2: Forward transfer metrics Zi in terms of success
for different domains i trained on easy-to-hard order
with and without domain gate.

the domain gate is not employed, which shows the
importance of this mechanism.

6.4 Results on Transformer-based Simulator
In order to strengthen our results and show that they
do not depend on the simulator used, we conducted
an additional experiment using the transformer-
based user simulator TUS (Lin et al., 2021). We
only show results for the mixed order, having in
mind that results have not been dependent on the
domain order used. Figure 5 shows that DDPT
again outperforms the baseline.

6.5 Results on Human Trial
We further validate the results by conducting a
human trial. We compare Bin, Gold and DDPT,
where Bin and DDPT were trained on the mixed
domain order. We hire humans through Amazon
Mechanical Turk and let them directly interact
with our systems, thereby collecting 258, 278 and
296 dialogues for Bin, Gold and DDPT, respec-
tively. After a user finished the dialogue we asked
1) whether the dialogue was successful (Success),
2) whether the system often mentioned something
the user did not ask for such as a wrong domain
(UnnecInfo) 3), whether the system gave too much
information (TooMuchInfo) and 4) about the gen-
eral performance (Performance). Table 3 shows
that the upper bound Gold and DDPT perform
equally well (p > 0.05) in every metric whereas
Bin performs statistically significant worse. The
low performance of Bin can be partially attributed
to frequently choosing a wrong domain that hu-
mans are more sensitive to than a user simulator.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn

Average performance across domains

Bin
Sem
DDPT
Gold

Figure 5: Training Bin, Sem and DDPT (ours) on the
mixed domain order with the transformer based user
simulator TUS.

Success ↑ UnnecInfo ↓ TooMuchInfo ↓ Performance ↑
Bin 0.45 3.98 3.15 2.45

Gold 0.81 2.79 2.71 3.65
DDPT 0.77 2.75 2.56 3.67

Table 3: Human trial results where Bin, Gold and DDPT
interacted with real users. There is no statistically sig-
nificant difference (p > 0.05) between DDPT and Gold,
while Bin is statistically significantly worse (p < 0.05)
than Gold and DDPT.

Example dialogues are given in Appendix A.6.

7 Conclusion

In this work we provided an algorithm, baseline
models and evaluation metrics to enable continual
RL for dialogue policy optimisation. Moreover,
we proposed a dynamic dialogue policy model
called DDPT that builds on information descrip-
tions, a pretrained language model and the trans-
former encoder-decoder architecture. It integrates
new information seamlessly as long as it is descrip-
tive, and obtains significant zero-shot performance
on unseen domains while being robust to forgetting.
The strengths of DDPT were validated in simula-
tion with two simulators as well as humans. This
opens the door for building evolving dialogue sys-
tems, that continually expand their knowledge and
improve their behaviour throughout their lifetime.

Acknowledgements

This work is a part of DYMO project which has re-
ceived funding from the European Research Coun-
cil (ERC) provided under the Horizon 2020 re-
search and innovation programme (Grant agree-

275

ment No. STG2018 804636). N. Lubis, C. van
Niekerk, M. Heck and S. Feng are funded by
an Alexander von Humboldt Sofja Kovalevskaja
Award endowed by the German Federal Ministry
of Education and Research. Computing resources
were provided by Google Cloud and HHU ZIM.

References
Magdalena Biesialska, Katarzyna Biesialska, and

Marta R. Costa-jussà. 2020. Continual lifelong learn-
ing in natural language processing: A survey. CoRR,
abs/2012.09823.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Massimo Caccia, Pau Rodríguez, Oleksiy Ostapenko,
Fabrice Normandin, Min Lin, Lucas Caccia, Is-
sam H. Laradji, Irina Rish, Alexandre Lacoste, David
Vázquez, and Laurent Charlin. 2020. Online fast
adaptation and knowledge accumulation: a new ap-
proach to continual learning. CoRR, abs/2003.05856.

Iñigo Casanueva, Paweł Budzianowski, Pei-Hao Su,
Stefan Ultes, Lina M. Rojas-Barahona, Bo-Hsiang
Tseng, and Milica Gašić. 2018. Feudal reinforcement
learning for dialogue management in large domains.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 714–719, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Yash Chandak, Georgios Theocharous, Shiv Shankar,
Martha White, Sridhar Mahadevan, and Philip S.
Thomas. 2020. Optimizing for the future in non-
stationary mdps. CoRR, abs/2005.08158.

Arslan Chaudhry, Puneet Kumar Dokania, Tha-
laiyasingam Ajanthan, and Philip H. S. Torr. 2018.
Riemannian walk for incremental learning: Under-
standing forgetting and intransigence. In Computer
Vision - ECCV 2018 - 15th European Conference, Mu-
nich, Germany, September 8-14, 2018, Proceedings,
Part XI, volume 11215 of Lecture Notes in Computer
Science, pages 556–572. Springer.

Lu Chen, Bowen Tan, Sishan Long, and Kai Yu. 2018.
Structured dialogue policy with graph neural net-
works. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1257–
1268, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Zhi Chen, Lu Chen, Xiaoyuan Liu, and Kai Yu.
2020. Distributed structured actor-critic reinforce-
ment learning for universal dialogue management.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 28:2400–2411.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Si-
monyan, Volodymyr Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg,
and Koray Kavukcuoglu. 2018. IMPALA: scalable
distributed Deep-RL with importance weighted actor-
learner architectures. In Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 1406–1415. PMLR.

Milica Gašić, Nikola Mrkšić, Pei-Hao Su, David
Vandyke, Tsung-Hsien Wen, and Steve Young. 2015.
Policy committee for adaptation in multi-domain spo-
ken dialogue systems. In 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding
(ASRU), pages 806–812.

Binzong Geng, Fajie Yuan, Qiancheng Xu, Ying Shen,
Ruifeng Xu, and Min Yang. 2021. Continual learn-
ing for task-oriented dialogue system with iterative
network pruning, expanding and masking. In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 517–523,
Online. Association for Computational Linguistics.

Raia Hadsell, Dushyant Rao, Andrei Rusu, and Razvan
Pascanu. 2020. Embracing change: Continual learn-
ing in deep neural networks. Trends in Cognitive
Sciences, 24:1028–1040.

David Isele and Akansel Cosgun. 2018. Selective expe-
rience replay for lifelong learning. In Proceedings of
the Thirty-Second AAAI Conference on Artificial In-
telligence and Thirtieth Innovative Applications of Ar-
tificial Intelligence Conference and Eighth AAAI Sym-
posium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press.

Minqi Jiang, Edward Grefenstette, and Tim Rock-
täschel. 2020. Prioritized level replay. CoRR,
abs/2010.03934.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and
Doina Precup. 2020a. Towards continual reinforce-
ment learning: A review and perspectives. CoRR,
abs/2012.13490.

Khimya Khetarpal, Matthew Riemer, Irina Rish, and
Doina Precup. 2020b. Towards continual reinforce-
ment learning: A review and perspectives. CoRR,
abs/2012.13490.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

http://arxiv.org/abs/2012.09823
http://arxiv.org/abs/2012.09823
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
http://arxiv.org/abs/2003.05856
http://arxiv.org/abs/2003.05856
http://arxiv.org/abs/2003.05856
https://doi.org/10.18653/v1/N18-2112
https://doi.org/10.18653/v1/N18-2112
http://arxiv.org/abs/2005.08158
http://arxiv.org/abs/2005.08158
https://doi.org/10.1007/978-3-030-01252-6_33
https://doi.org/10.1007/978-3-030-01252-6_33
https://www.aclweb.org/anthology/C18-1107
https://www.aclweb.org/anthology/C18-1107
https://doi.org/10.1109/TASLP.2020.3013392
https://doi.org/10.1109/TASLP.2020.3013392
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
https://doi.org/10.1109/ASRU.2015.7404871
https://doi.org/10.1109/ASRU.2015.7404871
https://doi.org/10.18653/v1/2021.acl-short.66
https://doi.org/10.18653/v1/2021.acl-short.66
https://doi.org/10.18653/v1/2021.acl-short.66
https://doi.org/10.1016/j.tics.2020.09.004
https://doi.org/10.1016/j.tics.2020.09.004
http://arxiv.org/abs/2010.03934
http://arxiv.org/abs/2012.13490
http://arxiv.org/abs/2012.13490
http://arxiv.org/abs/2012.13490
http://arxiv.org/abs/2012.13490
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

276

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory G. Slabaugh,
and Tinne Tuytelaars. 2019. Continual learning: A
comparative study on how to defy forgetting in clas-
sification tasks. CoRR, abs/1909.08383.

Erwan Lecarpentier and Emmanuel Rachelson. 2019.
Non-stationary markov decision processes, a worst-
case approach using model-based reinforcement
learning. In Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. 2021.
Dialogue state tracking with a language model using
schema-driven prompting. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4937–4949, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Kyusong Lee, Tiancheng Zhao, Alan W. Black, and
Maxine Eskenazi. 2018. DialCrowd: A toolkit for
easy dialog system assessment. In Proceedings of
the 19th Annual SIGdial Meeting on Discourse and
Dialogue, pages 245–248, Melbourne, Australia. As-
sociation for Computational Linguistics.

Sungjin Lee. 2017. Toward continual learning for con-
versational agents. CoRR, abs/1712.09943.

Esther Levin and Roberto Pieraccini. 1997. A stochastic
model of computer-human interaction for learning
dialogue strategies. In EUROSPEECH 97, pages
1883–1886.

Hsien-chin Lin, Nurul Lubis, Songbo Hu, Carel van
Niekerk, Christian Geishauser, Michael Heck, Shu-
tong Feng, and Milica Gašić. 2021. Domain-
independent user simulation with transformers for
task-oriented dialogue systems. In Proceedings of the
22nd Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 445–456, Sin-
gapore and Online. Association for Computational
Linguistics.

Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li,
Faisal Ahmed, and Li Deng. 2018. BBQ-networks:
Efficient exploration in deep reinforcement learning
for task-oriented dialogue systems. Proceedings of
the AAAI Conference on Artificial Intelligence, 32(1).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu, Eu-
njoon Cho, Pascale Fung, and Zhiguang Wang. 2021.
Continual learning in task-oriented dialogue systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7452–7467, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Brielen Madureira and David Schlangen. 2020. An
overview of natural language state representation for
reinforcement learning. ArXiv, abs/2007.09774.

Fei Mi, Liangwei Chen, Mengjie Zhao, Minlie Huang,
and Boi Faltings. 2020. Continual learning for natu-
ral language generation in task-oriented dialog sys-
tems. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3461–3474,
Online. Association for Computational Linguistics.

Fabrice Normandin, Florian Golemo, Oleksiy
Ostapenko, Pau Rodríguez, Matthew D. Riemer,
Julio Hurtado, Khimya Khetarpal, Dominic Zhao,
Ryan Lindeborg, Timothée Lesort, Laurent Charlin,
Irina Rish, and Massimo Caccia. 2021. Sequoia:
A software framework to unify continual learning
research. CoRR, abs/2108.01005.

German Parisi, Ronald Kemker, Jose Part, Christopher
Kanan, and Stefan Wermter. 2019. Continual lifelong
learning with neural networks: A review. Neural
Networks, 113:54–71.

Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun
Li, Jinchao Li, Michael Zeng, and Jianfeng Gao.
2020. Few-shot natural language generation for task-
oriented dialog. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
172–182, Online. Association for Computational Lin-
guistics.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi,
and Abhinav Gupta. 2021. CORA: Benchmarks,
baselines, and metrics as a platform for continual
reinforcement learning agents.

Abhinav Rastogi, Raghav Gupta, and Dilek Hakkani-
Tur. 2018. Multi-task learning for joint language
understanding and dialogue state tracking. arXiv
preprint arXiv:1811.05408.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. To-
wards scalable multi-domain conversational agents:
The schema-guided dialogue dataset. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8689–8696.

Peter Gordon Roetzel. 2019. Information overload
in the information age: a review of the literature
from business administration, business psychology,
and related disciplines with a bibliometric approach
and framework development. Business Research,
12(2):479–522.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Tim-
othy P. Lillicrap, and Greg Wayne. 2018. Ex-
perience replay for continual learning. CoRR,
abs/1811.11682.

Nicholas Roy, Joelle Pineau, and Sebastian Thrun. 2000.
Spoken dialogue management using probabilistic rea-
soning. In Proceedings of the 38th Annual Meeting
on Association for Computational Linguistics, ACL
’00, page 93–100, USA. Association for Computa-
tional Linguistics.

http://arxiv.org/abs/1909.08383
http://arxiv.org/abs/1909.08383
http://arxiv.org/abs/1909.08383
https://proceedings.neurips.cc/paper/2019/file/859b00aec8885efc83d1541b52a1220d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/859b00aec8885efc83d1541b52a1220d-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/859b00aec8885efc83d1541b52a1220d-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/W18-5028
https://doi.org/10.18653/v1/W18-5028
http://arxiv.org/abs/1712.09943
http://arxiv.org/abs/1712.09943
https://aclanthology.org/2021.sigdial-1.47
https://aclanthology.org/2021.sigdial-1.47
https://aclanthology.org/2021.sigdial-1.47
https://ojs.aaai.org/index.php/AAAI/article/view/11946
https://ojs.aaai.org/index.php/AAAI/article/view/11946
https://ojs.aaai.org/index.php/AAAI/article/view/11946
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2021.emnlp-main.590
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://doi.org/10.18653/v1/2020.findings-emnlp.310
https://doi.org/10.18653/v1/2020.findings-emnlp.310
http://arxiv.org/abs/2108.01005
http://arxiv.org/abs/2108.01005
http://arxiv.org/abs/2108.01005
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.18653/v1/2020.findings-emnlp.17
https://doi.org/10.18653/v1/2020.findings-emnlp.17
http://arxiv.org/abs/2110.10067
http://arxiv.org/abs/2110.10067
http://arxiv.org/abs/2110.10067
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://doi.org/10.1609/aaai.v34i05.6394
https://EconPapers.repec.org/RePEc:spr:busres:v:12:y:2019:i:2:d:10.1007_s40685-018-0069-z
https://EconPapers.repec.org/RePEc:spr:busres:v:12:y:2019:i:2:d:10.1007_s40685-018-0069-z
https://EconPapers.repec.org/RePEc:spr:busres:v:12:y:2019:i:2:d:10.1007_s40685-018-0069-z
https://EconPapers.repec.org/RePEc:spr:busres:v:12:y:2019:i:2:d:10.1007_s40685-018-0069-z
https://EconPapers.repec.org/RePEc:spr:busres:v:12:y:2019:i:2:d:10.1007_s40685-018-0069-z
http://arxiv.org/abs/1811.11682
http://arxiv.org/abs/1811.11682
https://doi.org/10.3115/1075218.1075231
https://doi.org/10.3115/1075218.1075231

277

Lei Shu, Hu Xu, Bing Liu, and Piero Molino. 2019.
Modeling multi-action policy for task-oriented dia-
logues. CoRR, abs/1908.11546.

Pei-Hao Su, Milica Gašić, Nikola Mrkšić, Lina Maria
Rojas-Barahona, Stefan Ultes, David Vandyke,
Tsung-Hsien Wen, and Steve J. Young. 2016. Contin-
uously learning neural dialogue management. CoRR,
abs/1606.02689.

Ryuichi Takanobu, Hanlin Zhu, and Minlie Huang.
2019. Guided dialog policy learning: Reward es-
timation for multi-domain task-oriented dialog. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 100–110, Hong
Kong, China. Association for Computational Linguis-
tics.

Carel van Niekerk, Andrey Malinin, Christian
Geishauser, Michael Heck, Hsien-chin Lin, Nurul
Lubis, Shutong Feng, and Milica Gašić. 2021. Un-
certainty measures in neural belief tracking and the
effects on dialogue policy performance. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 7901–7914,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Vladimir Vlasov, Johannes E. M. Mosig, and Alan
Nichol. 2019. Dialogue transformers. CoRR,
abs/1910.00486.

Zhuoran Wang, Tsung-Hsien Wen, Pei-Hao Su, and Yan-
nis Stylianou. 2015. Learning domain-independent
dialogue policies via ontology parameterisation. In
Proceedings of the 16th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue, pages
412–416, Prague, Czech Republic. Association for
Computational Linguistics.

Gellért Weisz, Paweł Budzianowski, Pei-Hao Su, and
Milica Gašić. 2018. Sample efficient deep reinforce-
ment learning for dialogue systems with large action
spaces. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 26(11):2083–2097.

Jason D. Williams and Steve Young. 2007. Partially ob-
servable Markov decision processes for spoken dia-
log systems. Comput. Speech Lang., 21(2):393–422.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,
Caiming Xiong, Richard Socher, and Pascale Fung.
2019. Transferable multi-domain state generator for
task-oriented dialogue systems. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 808–819, Florence, Italy.
Association for Computational Linguistics.

Yumo Xu, Chenguang Zhu, Baolin Peng, and Michael
Zeng. 2020. Meta dialogue policy learning. CoRR,
abs/2006.02588.

Steve Young, Jost Schatzmann, Karl Weilhammer, and
Hui Ye. 2007. The hidden information state approach
to dialog management. In 2007 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing - ICASSP ’07, volume 4, pages IV–149–IV–152.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020a. Task-
oriented dialog systems that consider multiple ap-
propriate responses under the same context. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 9604–
9611. AAAI Press.

Zheng Zhang, Ryuichi Takanobu, Minlie Huang, and
Xiaoyan Zhu. 2020b. Recent advances and chal-
lenges in task-oriented dialog system. CoRR,
abs/2003.07490.

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,
Xiaoyan Zhu, and Minlie Huang. 2020. ConvLab-2:
An open-source toolkit for building, evaluating, and
diagnosing dialogue systems. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
142–149, Online. Association for Computational Lin-
guistics.

A Appendix

A.1 Background on CLEAR

A.1.1 VTRACE Algorithm
VTRACE (Espeholt et al., 2018) is an off-policy
actor critic algorithm. As such, it optimizes both
a policy πθ and a corresponding critic Vψ that es-
timates the state-value function V of πθ. Actor
and critic are both updated using experience from
a replay buffer B.

Given a trajectory τ = (st, at, rt)
t=k+n
t=k gener-

ated by a behaviour policy µ, the n-steps vtrace-
target for V (sk) is defined as

vk = V (sk) +
k+n−1∑
t=k

γt−k(
t−1∏
i=k

ci)δtV,

where δtV = ρt(rt + γV (st+1)− V (st)) is a tem-
poral difference for V , and ρt = min(ρ, π(at|st)µ(at|st))

and ci = min(c, π(ai|si)µ(ai|si)) are truncated importance
sampling weights. The scalars ρ and c are hyperpa-
rameters where it is assumed that ρ ≥ c.

http://arxiv.org/abs/1908.11546
http://arxiv.org/abs/1908.11546
http://arxiv.org/abs/1606.02689
http://arxiv.org/abs/1606.02689
https://doi.org/10.18653/v1/D19-1010
https://doi.org/10.18653/v1/D19-1010
https://aclanthology.org/2021.emnlp-main.623
https://aclanthology.org/2021.emnlp-main.623
https://aclanthology.org/2021.emnlp-main.623
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1910.00486
https://doi.org/10.18653/v1/W15-4654
https://doi.org/10.18653/v1/W15-4654
https://doi.org/10.1109/TASLP.2018.2851664
https://doi.org/10.1109/TASLP.2018.2851664
https://doi.org/10.1109/TASLP.2018.2851664
https://doi.org/10.1016/j.csl.2006.06.008
https://doi.org/10.1016/j.csl.2006.06.008
https://doi.org/10.1016/j.csl.2006.06.008
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
http://arxiv.org/abs/2006.02588
https://doi.org/10.1109/ICASSP.2007.367185
https://doi.org/10.1109/ICASSP.2007.367185
https://aaai.org/ojs/index.php/AAAI/article/view/6507
https://aaai.org/ojs/index.php/AAAI/article/view/6507
https://aaai.org/ojs/index.php/AAAI/article/view/6507
http://arxiv.org/abs/2003.07490
http://arxiv.org/abs/2003.07490
https://doi.org/10.18653/v1/2020.acl-demos.19
https://doi.org/10.18653/v1/2020.acl-demos.19
https://doi.org/10.18653/v1/2020.acl-demos.19

278

The critic function is then optimized to minimize
the gap between its prediction and the vtrace-target:

Lcritic(ψ) = Eτ∼B[(vk − Vψ(sk))
2] (3)

The actor is optimized using the following off-
policy policy gradient:

Eτ∼B[
π(ak|sk)
µ(ak|sk)

Ak∇θ log πθ(ak|sk)] (4)

where Ak = (rk+ γvk+1−Vψ(sk)) is an estimate
of the advantage function. To prevent premature
convergence, they add an entropy loss Lentropy(θ)
during optimization.

A.1.2 CLEAR
CLEAR is a continual learning algorithm that
adapts VTRACE to fulfill the continual learning
requirements. The goal is to obtain fast adaptation
capabilities as well as preventing catastrophic for-
getting. Fast adaptation is tackled by using the most
recent trajectories instead of randomly sampling
from the buffer B in Equations 3 and 4.

In order to prevent catastrophic forgetting, they
sample non-recent experience from the replay
buffer and update policy and critic using Equations
3 and 4. To further regularize these non-recent up-
dates, they introduce regularization losses Lπ−reg
and Lv−reg. Lv−reg forces the critic prediction to
be close to the historic prediction through a mean-
squared error loss. Lπ−reg regularizes the actor
to minimize the KL-divergence between the be-
haviour policy µ and current policy πθ:

Lv−reg(ψ) = Eτ∼B[(Vψ(sk)− Vreplay(sk))
2]

Lπ−reg(θ) = Eτ∼B[
∑
a

µ(a|sk) log
µ(a|sk)

πθ(a|sk)
]

An online-offline ratio determines how many re-
cent and non-recent experience is used in an update,
thereby trading-off fast adaptation and catastrophic
forgetting prevention.

A.2 Training details
For the baselines, the MLP encoder uses a 3-layer
MLP with hidden dimension of 128 and RELU as
activation function. We use a GRU with 2 layers
and input size as well as hidden size of 128 for
action decoding. The domain, intent and slot em-
beddings for action prediction have a size of 64.

They are fed through a linear layer that projects it
to a vector of size 128 (same size as GRU output)
in order to allow computation of the scalar prod-
uct with the GRU output. The semantic encoding
in Sem uses an embedding size of 32 for domain,
intent, slot and values. The critic for Bin and Sem
has the same architecture as the MLP encoder, with
an additional linear layer to project the output to a
real valued number.

For the DDPT model, we use an input size and
hidden size of 128 in both transformer encoder
and decoder. We use two heads for the encoder
and decoder, 4 transformer layers for the encoder
and 2 for the decoder. The critic for DDPT has
the same architecture as the transformer encoder,
obtaining the same input as the policy module plus
an additional CLS vector (as in RoBERTa). The
output of the CLS vector is fed into a linear layer
to obtain the critic prediction.

For every model, we use the same training con-
figurations. We use the ADAM optimiser (Kingma
and Ba, 2015) with a learning rate of 5e-5 and 1e-4
for policy and critic module, respectively. We sam-
ple a batch of 64 episodes for updating the model
after every 2 new dialogues. The replay buffer size
is set to 5000. For the VTRACE algorithm, the
parameters ρ̄ and c̄ are set to 1.0. For CLEAR
we use an online-offline ratio of 0.2, i.e. 20% of
the dialogues in a batch are from the most recent
dialogues and the remaining 80% from historical
dialogues. The regularization losses are weighted
by 0.1 and the entropy loss by 0.01.

We used a NVIDIA Tesla T4 provided by the
Google Cloud Platform for training the models.
The training of one model took 10 to 16 hours
depending on the architecture used.

A.3 Masking of illegal actions
To aid the policy in the difficult RL environment,
we add a simple masking mechanism that prohibits
illegal actions. The action masking includes the
following

• If the data base query tells us that entities for a
domain are available, the policy is not allowed
to say that there are no entities available.

• If there is no entity found with the current
constraints, the policy is not allowed to inform
on information about entities.

• The Booking domain is only usable for hotel
and restaurant.

279

A.4 Baselines

As mentioned in Section 5.2, the second baseline
incorporates the idea from Xu et al. (2020), which
uses trainable embeddings for domains, intents and
slots to allow cross-domain transfer. For every
feature category (such as user-act, user goal, etc.)
and every domain, it calculates for every feature
in that category a representation using trainable
domain, intent and slot embeddings. The features
in a category are then averaged over domains to
obtain a final representation.

For instance, considering the user-act category
for a domain d, the user act (d, ik, sk)

n
k=0 is

first embedded as ŝu-act,d =
1
n

∑n
k=0[vd,vik ,vsk],

where vd,vik and vsk are trainable embeddings
for domain d, intents ik and slots sk and after-
wards fed through a residual block, leading to
su-act,d = ŝu-act,d + ReLU(Wu-actŝu-act,d + bu-act).
If there is no user-act for domain d, we use an
embedding for no-user-act to indicate that. The
overall feature representation for the user-act is
then given by su-act =

1
|D|

∑
d∈D su-act,d.

The representations for different feature cate-
gories are then concatenated and fed into a multi-
layer perceptron encoder. The state encoding can
be seen in Figure 2(b). We abbreviate this baselines
as Sem as it uses semantic features.

A.5 Descriptions

Our DDPT model uses descriptions for every possi-
ble information. This allows us to seamlessly deal
with new information we have not seen before yet
by leveraging a pretrained language model. The
language model provides us token embeddings for
the description, which are averaged in order to ob-
tain the description embedding. The descriptions
are built as follows.

• For every domain d and every slot s the user
can inform on, the description is given by
user goal <d> <s>. The correspond-
ing value is 1, if that slot has been mentioned
and 0 else.

• For every atomic user act d i s that was
used in the current turn, the description is
given by user act <d> <i> <s>. We
consider each atomic user act as one infor-
mation and only provide user acts that were
used in the current turn to the model with a
corresponding value of 1.

A�rac�on
Turn 0
User: I'm looking for a night club in the north area.

System: im sorry, we do not have a nightclub a�rac�on like that, could i help you find something else?
Turn 1
User: Is there a night club in the centre?
System: sure, ballare is located in the centre, the postcode is cb23na and the entrance fee is 5 pounds.
Turn 2

User: thank you, bye
System: youre welcome. let us know if you need anything else.

Restaurant
Turn 0
User: I am interested in making a restaurant booking.

System: Did you want italian or not italian food?
Turn 1
User: I would like cheap Chinese food
System: may i suggest charlie chan? its located at regent street city centre and the phone number is 01223361763
Turn 2

User: Can you book it on Thursday for 2 people at around 19.45
System: ok ive got you booked for thursday. your reference number is 00000010.
Turn 3

User: thank you very much
System: Thanks for your par�cipa�on.

Hotel
Turn 0
User: I need to book a hotel
System: will you be staying at a guesthouse? what is your price range and what ameni�es are you looking for?
Turn 1
User: I will stay at a guesthouse. I need parking and 3 stars
System: i recommend bridge guest house. it is in the moderate price range. its phone number is 01223247942.
Turn 2

User: What is the address?
System: bridge guest house is located at 151 hills road and has a postcode of cb28rj. does this sound okay?
Turn 3

User: bye
System: Thanks for your par�cipa�on.

Figure 6: Example dialogues that were collected during
the human trial. Users hired through Amazon Mechani-
cal Turk interact with our DDPT model.

• For every atomic system act d i s that
was used in the previous turn, the descrip-
tion is given by last system act <d>
<i> <s> with a corresponding value of 1.

• For every domain dwhere a data base query is
possible to obtain the number of entities that
fulfill the user constraints, the description is
given by data base <d> <number of
entities> with a corresponding value in-
dicating the number of search results.

• For every domain d where an entity can be
booked, the description is given by general
<d> <booked> with a binary indicating
whether an entity has already been booked.

A.6 Human trial

We conducted a human trial to validate our results
in simulation. The website was build using Di-
alCrowd (Lee et al., 2018) and users were hired
using Amazon Mechanical Turk. We used Set-
SUMBT (van Niekerk et al., 2021) as belief tracker
and SC-GPT (Peng et al., 2020) as NLG module
to accompany the dialogue policies Bin, Gold and
DDPT in the dialogue system pipelines. Example
dialogues, where DDPT interacted with users hired
through Amazon Mechanical Turk, are depicted in
Figure 6.

280

Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction / / / 0.43 0.35 0.83 0.60 0.33 0.79
Taxi 0.51 0.75 0.90 0.51 0.47 0.85 0.35 0.43 0.77
Train 0.21 0.18 0.76 0.23 0.15 0.28 0.17 0.09 0.34

Restaurant 0.47 0.36 0.73 0.62 0.52 0.74 / / /
Hotel 0.36 0.26 0.53 / / / 0.39 0.28 0.39

Average 0.39 0.39 0.73 0.45 0.37 0.68 0.38 0.29 0.57
Random 0.39 0.26 0.34 0.39 0.26 0.34 0.39 0.26 0.34

Table 4: Forward transfer table showing for every do-
main i the metric Zi in terms of success rate, where
numbers range between 0 and 1. The higher the number,
the more forward transfer is achieved.

Easy-to-hard Hard-to-easy Mixed order Random
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction 0.28 0.49 0.03 0.08 0.09 0.02 0.29 0.40 0.0
Taxi 0.13 0.15 0.01 0.01 0.01 0.02 0.01 0.02 0.0
Train 0.18 0.20 0.02 0.13 0.14 -0.01 0.03 0.03 0.0

Restaurant 0.06 0.11 -0.01 0.16 0.19 0.0 0.22 0.26 0.09
Hotel 0.04 0.07 0.0 0.32 0.41 0.07 0.14 0.19 0.03

Average 0.14 0.20 0.01 0.14 0.17 0.02 0.14 0.18 0.03 0.43

Table 5: Forgetting table showing for every domain i the
metric Fi in terms of success rate, where numbers range
between -1 and 1. Negative numbers indicate backward
transfer whereas positive numbers indicate forgetting.

Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction / / / -88 -124 12 -16 -125 -3
Taxi -91 -32 23 -65 -117 13 -85 -127 -12
Train -149 -156 -17 -66 -180 -108 -140 -189 -112

Restaurant -94 -119 -15 -15 -97 -19 / / /
Hotel -121 -143 -81 / / / -45 -139 -107

Average -114 -113 -23 -58 -129 -25 -71 -145 -58

Table 6: Forward transfer table showing for every
domain i the metric Zi in terms of average return.
The higher the number, the more forward transfer is
achieved.

Easy-to-hard Hard-to-easy Mixed order
Task Bin Sem DDPT Bin Sem DDPT Bin Sem DDPT

Attraction 99 151 6 34 36 2 93 126 1
Taxi 73 89 4 16 23 4 18 29 1
Train 68 68 1 43 49 -2 10 10 -1

Restaurant 35 38 -1 59 71 2 78 91 26
Hotel 12 21 -1 89 112 18 51 59 7

Average 58 73 2 48 58 5 50 63 7

Table 7: Forgetting table showing for every domain i the
metric Fi in terms of average return. Negative numbers
indicate backward transfer whereas positive numbers
indicate forgetting.

A.7 Forward Transfer and Forgetting

We provide the forward and forgetting tables in
terms of success rate and average return in Tables
4, 5, 6, 7.

A.8 Continual Evaluation

Here, we provide in-depth results for all experi-
ments. Each graph shows the performance of a sin-
gle domain during training. Moreover, we provide

the average performance over domains in terms of
success rate in Figure 7 to complement Figure 4.

281

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

Average performance across domains

Bin
Sem
DDPT
Gold

(a) easy-to-hard order

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

Average performance across domains

Bin
Sem
DDPT
Gold

(b) hard-to-easy order

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

Average performance across domains

Bin
Sem
DDPT
Gold

(c) mixed domain order

Figure 7: Training the three architectures Bin, Sem and DDPT using CLEAR on three different domain orders,
each with 5 different seeds. Each model is evaluated every 500 training dialogues on 100 dialogues per domain.
The plots show the success rate, where performance is averaged over domains. The vertical line at 8000 dialogues
indicates the start of cycle 2.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
at

tra
ct

io
n

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(a) Success rate on attraction domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
ta

xi

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(b) Success rate on taxi domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
tra

in

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(c) Success rate on train domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
re

st
au

ra
nt

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(d) Success rate on restaurant domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
ho

te
l

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(e) Success rate on hotel domain

Figure 8: Success rate for each individual domain, where algorithms are trained in the order easy-to-hard.

282

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
at

tra
ct

io
n

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(a) Average return on attraction do-
main

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
ta

xi

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(b) Average return on taxi domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
tra

in

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(c) Average return on train domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
re

st
au

ra
nt

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(d) Average return on restaurant do-
main

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
ho

te
l

Domain order: attraction,taxi,train,restaurant,hotel

Bin
Sem
DDPT

(e) Average return on hotel domain

Figure 9: Average return for each individual domain, where algorithms are trained in the order easy-to-hard.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
at

tra
ct

io
n

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(a) Success rate on attraction domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
ta

xi

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(b) Success rate on taxi domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
tra

in

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(c) Success rate on train domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
re

st
au

ra
nt

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(d) Success rate on restaurant domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
ho

te
l

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(e) Success rate on hotel domain

Figure 10: Success rate for each individual domain, where algorithms are trained in the order hard-to-easy.

283

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
at

tra
ct

io
n

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(a) Average return on attraction do-
main

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
ta

xi

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(b) Average return on taxi domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
tra

in

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(c) Average return on train domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
re

st
au

ra
nt

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(d) Average return on restaurant do-
main

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
ho

te
l

Domain order: hotel,restaurant,train,taxi,attraction

Bin
Sem
DDPT

(e) Average return on hotel domain

Figure 11: Average return for each individual domain, where algorithms are trained in the order hard-to-easy.

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
at

tra
ct

io
n

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(a) Success rate on attraction domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
ta

xi

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(b) Success rate on taxi domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
tra

in

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(c) Success rate on train domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
re

st
au

ra
nt

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(d) Success rate on restaurant domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s r

at
e

on
 d

om
ai

n
ho

te
l

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(e) Success rate on hotel domain

Figure 12: Success rate for each individual domain, where algorithms are trained in the order mixed.

284

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
at

tra
ct

io
n

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(a) Average return on attraction do-
main

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
ta

xi

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(b) Average return on taxi domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
tra

in

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(c) Average return on train domain

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
re

st
au

ra
nt

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(d) Average return on restaurant do-
main

0 2000 4000 6000 8000 10000 12000 14000 16000
Training dialogues

150

125

100

75

50

25

0

25

50

Av
er

ag
e

re
tu

rn
 o

n
do

m
ai

n
ho

te
l

Domain order: restaurant,attraction,hotel,taxi,train

Bin
Sem
DDPT

(e) Average return on hotel domain

Figure 13: Average return for each individual domain, where algorithms are trained in the order mixed.

