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Abstract

This work revisits the task of detecting
decision-related utterances in multi-party dia-
logue. We explore performance of a traditional
approach and a deep learning-based approach
based on transformer language models, with
the latter providing modest improvements. We
then analyze topic bias in the models using
topic information obtained by manual annota-
tion. Our finding is that when detecting some
types of decisions in our data, models rely
more on topic specific words that decisions are
about rather than on words that more gener-
ally indicate decision making. We further ex-
plore this by removing topic information from
the train data. We show that this resolves the
bias issues to an extent and, surprisingly, some-
times even boosts performance.

1 Intro

We spend a lot of our time in meetings. Record-
ings of such meetings in the form of video or audio
recordings or transcripts can be a valuable resource,
but we need automatic processing and summariza-
tion methods if we are to be able to quickly search
and retrieve the information we need. According to
user surveys, the primary requirement of users from
a meeting summarization system is a record of the
decisions made (Lisowska et al., 2004; Banerjee
et al., 2005). It can allow tracking of decisions and
the reasoning behind them, as well as alternatives
that were proposed and discussed.

Previous work on the task of automatic decision
detection (e.g. Hsueh and Moore, 2007; Fernández
et al., 2008; Bui and Peters, 2010) shows that the
problem is challenging: performance is limited
(Fernández et al., 2008) unless strong assumptions
about the nature of the data are made (Bui and Pe-
ters, 2010). E.g., assuming particular structure of
the dialogue, rather than learning it from data. One
reason for this is the lack of large datasets for the
task. Here, we show that previous models are also

affected by another issue resulting from lack of
data: topic bias. The intuition behind this problem
is that the models might pick up on words that de-
cisions are about instead of words that generally
indicate decision making. As an example of this
we provide the decision utterance - We agree to use
a battery as a power source. A decision detection
model might pick up on battery or power source as
indicating decision making, simply because these
phrases are something that often accompany deci-
sion in our data. However, a more unbiased model
would ideally pick up on we agree as indicating
decision making. Our goal here is to explore and
mitigate this problem by manually removing topic
specific words, preventing the model from becom-
ing topically biased.

The contributions of this paper are two-fold.
First, we present a deep learning based prediction
model for a decision detection task. Second, we
give an analysis of topic bias in the data and mod-
els for this task, and show how our model can be
made less susceptible to this bias compared to pre-
vious approaches. We make all our code and data
publicly available.1

2 Related Work

Some work in decision detection treats it as a text
classification problem, and in some domains this
is successful; Bhat et al. (2017) achieve good ac-
curacy detecting software architecture decisions in
issue tracking systems. The same approach can be
applied to face-to-face meeting dialogue, classify-
ing individual utterances as decision-related or not
on the basis of a range of lexical, structural and
semantic features; but in this domain performance
is lower (Hsueh and Moore, 2007). Fernández et al.
(2008) improve on this by considering the structure
of the decision-making dialogue: they propose a
set of decision-specific dialogue acts (DDAs) and

1https://github.com/mladenk42/decibert

https://github.com/mladenk42/decibert
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a model using support vector machines (SVMs)
to classify each DDA, using the outputs to predict
decision discussion regions. Similarly, Frampton
et al. (2009) explore real-time decision detection.

Further improvements have been shown via
more explicit modeling of decision-making dia-
logue structure, encoded as probabilistic graphical
models, and including non-lexical and prosodic
features (Bui et al., 2009; Bui and Peters, 2010),
but at the cost of assuming a fixed structure to a
discussion rather than learning it from data.

In contrast to related work, our primary focus
is exploring the, thus far unaddressed, topic bias
issues rather than maximum performance. Conse-
quently, we opt for simpler models that use only
the text without additional features. We include
one traditional and one deep learning based model.

3 Dataset

We use the dataset introduced by Fernández et al.
(2008), an annotated subset of transcripts from the
AMI meeting corpus (McCowan et al., 2005) cover-
ing 17 meetings in which actors stage a simulated
meeting with the task of designing a remote control.
Each utterance is annotated with one or more of
four specific decision dialogue acts (DDAs): issue
(I), resolution proposed (RP), resolution restated
(RR), and agreement (A). Categories RR and RP
are both very low in number, which would likely
hinder deep learning approaches. However, they
are conceptually very similar, so we decided to
merge them into a single category we denote as
R. The annotations are multilabel (one utterance
can perform more than one DDA), although it is
quite rare for an instance to have multiple labels
(less than 1%). Other available utterance metadata
includes speaker id, timestamp, and a decision id
(only for DDA utterances). The total number of
utterances in the dataset is 15680. DDAs are rare,
with each category making up only 1-2% of utter-
ances. The sparsity of the decision acts presents a
considerable problem for all work on this data set.
Table 1 gives some examples and statistics.

4 Methodology

As part of our methodology, we next describe the
models and evaluative metrics we employ.

4.1 Models

Baseline As features for the baseline model, we
generate a Tf-Idf weighted vector representation

count % example

I 138 0.9 And what tha what about the uh materials?
R 209 1.3 So I guess the case would be plastic,
A 324 2.1 Yeah. Uh as an option maybe.

Table 1: Utterance counts and percentages for the three
DDA categories – Issue (I), Resolution (R), and Agree-
ment (A), with examples.

of each utterance. Then, we use a similar baseline
as the one in (Fernández et al., 2008). We include
context by extending the vector of each utterance
with vectors of nearby utterances in a context win-
dow of size N around it. We feed the extended
representations into a logistic regression classifier.

BERT-LSTM As the basis of our deep learning
approach we use BERT, a popular transformer-
based language model shown to perform well
across a diverse range of tasks (Devlin et al., 2019).
Specifically we use SentenceBERT (Reimers and
Gurevych, 2019) to generate a 768-dimensional
vector representation for each utterance. To gen-
erate a prediction for utterance uk at position k,
given a context window of size N , we consider
the sequence of BERT vector representations for
utterances uk−N

2
...uk+N

2
, of length N . We run

a bidirectional long-short term memory (LSTM,
Hochreiter and Schmidhuber, 1997) network over
this sequence, yielding N hidden state outputs.2

Each output is fed into 3 separate linear + softmax
layers, producing three separate binary decisions,
one for each DDA class.3 Thus, for each utterance
we obtain, as a byproduct, a multilabel decision for
each utterance within its context window.

When training the model we minimize the fol-
lowing loss function:

∑
c∈{I,R,A}

K∑
k=1

k+N
2∑

j=k−N
2

CEw(yc,k,j , tc,k,j) (1)

where c is one of the categories, k iterates over
utterances, and j over context utterances of utter-
ance uk. Moreover yc,k,j , denotes the prediction
of the model for utterance uj when it is part of a
context window centered over uk. This prediction
can indicate uj belongs to category c (yc,k,j = 1)
or does not (yc,k,j = 0). The corresponding cor-
rect prediction is denoted as tc,k,j . Finally, CEw

2We could not consider each meeting as one long sequence,
as there are only 17 of them.

3The linear layers share weights across all timesteps.
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denotes the cross-entropy loss, weighted to account
for the highly imbalanced number of positive and
negative examples in each category.4 We use this
as it works with multilabel annotations.

When making predictions with this model for ut-
terance uk with respect to class c, we run the above
model for a context window of size N around uk
and take the center prediction, i.e. yc,k,k.

Since the goal of this paper is to explore bias,
rather than maximize performance, we stick to this
simpler deep learning approach and leave the in-
vestigation of more complex alternatives, such as
dialog oriented models from (Wu et al., 2020; Gu
et al., 2020) to future work.

Both models are implemented using Scikit-learn
(Pedregosa et al., 2011) and PyTorch (Paszke et al.,
2019). The hyperparameters and other training
details of all models are provided in Section 5.

4.2 Evaluation metrics

The models are evaluated using the metrics of
Fernández et al. (2008), with two evaluation se-
tups described below.

Utterance level evaluation (ULE) This ap-
proach is implemented as described by Hsueh and
Moore (2007). In essence it is a lenient variant of
F-score that works on the level of individual utter-
ances but tolerates a level of misalignment between
the labeled DDAs and those hypothesized by the
model: we use a window of ±20 utterances around
the gold utterance, following (Hsueh and Moore,
2007; Fernández et al., 2008).

Segment level evaluation (SEG) Here a meet-
ing is split into fixed 30 second segments, with a
segment considered as predicted positive if it con-
tains at least one utterance labeled as positive for
at least one DDA by the model. Gold labels for
each segment are positive if (1) it overlaps with any
gold annotated DDA or (2) the nearest gold anno-
tated DDA before and after the segment have the
same decision id. (Part (2) accounts for segments
which are a part of decision discussion but do not
themselves contain any DDAs). The score is then
computed as a standard F1 score.

4.3 Masking topic words

As all meetings in the dataset are on the same topic
of designing a remote control, we hypothesize there

4We use the method of King and Zeng (2001) implemented
in scikit-learn to obtain the weights.

#topic words examples

I 14/50 controller, power, solar, graphical
R 6/50 batteries, option, system, internal
A 3/50 remote, control, lights

Table 2: Statistics of topic words in the 50 most proba-
ble words per class in a Naı̈ve Bayes classifier.

could be topic bias in the data or models. The
AMI meetings cover a relatively small set of is-
sues (e.g., power source, case material, button type,
colour) and proposed resolutions (e.g., kinetic en-
ergy, rubber, background light, transparent). A
classifier is therefore likely to learn to detect is-
sues/resolutions via this domain-specific vocabu-
lary rather than more generalisable patterns. To
explore this hypothesis, we first fit a Naı̈ve Bayes
classifier to the data using binary word counts as
features. We do this for each category separately,
with the category being a binary target variable.
We then observe the most probable words for the
positive outcome. The results reveal a consider-
able number of such topic words present in the
most influential 50 words. Some more statistics
and examples are given in Table 2.

To investigate the extent of this effect, we at-
tempt to train less topic-dependent versions of our
models. We first manually examined a total of 656
utterances labeled with at least one DDA category,
resulting in a list of 115 domain-topic words.5 We
use this as a masking dictionary to produce two
modified versions of the transcripts. First, with the
masked words removed; second, with the masked
words replaced by the special BERT [MASK] to-
ken. These are then used to train models which we
hypothesize will show less topic bias. As the first
method performs better, we present only results
from the first due to reasons of space.

5 Experiments and results

Experiment setup We evaluate the models using
leave one out cross-validation. In each iteration,
we train the models on 16 meetings and test them
on the remaining meeting. For both the ULE and
SEG evaluation setups, scores are calculated at the
level of the meeting and averaged.

For the logistic regression baseline, we optimize
the regularization hyperparameter to maximize the

5This was done completely manually, and is not related to
the Naı̈ve Bayes analysis, which we did only to gain intuition
and motivation for the manual analysis.
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No masking With masking

Baseline BERT Baseline BERT

P R F1 P R F1 P R F1 P R F1
I .152 .440 .209 .221 .314 .232 .140 .530 .210 .237 .361 .263
R .210 .713 .304 .236 .490 .292 .174 .769 .271 .294 .527 .333
A .175 .845 .283 .257 .658 .352 .165 .844 .270 .255 .627 .343
SEG .337 .885 .527 .419 .761 .540 .355 .906 .510 .427 .770 .547

Table 3: Results of the baseline and BERT models for all four classification setups with and without masking.

Figure 1: Model performances from Table 1 visualised.

overall crossvalidation score;6 the best setting was
1.0. For the BERT-LSTM we optimize hyperpa-
rameters on held out data using a fixed split. We
set the hidden layer size of the BiLSTM to 50 and
the number of layers to 1. The best context window
size was ±1 for both models. We keep these set-
tings fixed throughout the rest of the experiments.

For the BERT-LSTM model we use the Adam
(Kingma and Ba, 2015) optimizer with learning
rate 10−4 and minibatch size 32. Out of the 16
training meetings we set one aside as a develop-
ment set for early stopping. We train the model
until there has been no improvement in score for
any of the evaluation setups on the development
data for 5 consecutive epochs. Furthermore, we
found that due to the small data set size, this train-
ing regime sometimes produces very bad models
(depending on random initialisation). We circum-
vent this by training it several (in our case 16) times
with different development meetings and different
random initialisations. We use on the test set the
variant that has highest test set confidence scores.7

6Making the baseline stronger than in a realistic scenario.
7This in no way uses the test set labels.

Results We give our main results in Table 3; note
that the low absolute values are due to the rarity of
DDA utterances. A visualisation of the same data is
given in Figure 1. The BERT-LSTM model outper-
forms the baseline model in terms of F1 score for
almost all cases, and consistently sacrifices recall
to gain precision.

We next explore how masking affects each
model. For the baseline, masking slightly reduces
performance; although we know from Table 2 that
many of the non-masked model’s features will be
topic-specific, the masked training seems to recover
most of the performance.

For BERT-LSTM, however, performance in-
creases: at least for some examples, removing topic
bias from the data helps improve performance. Dif-
ferences between non-masked and masked BERT-
LSTM models are statistically significant (p <
0.05) for I, R, and SEG.

The improvements are largest for I and R cate-
gories, which use more topic-specific vocabulary;
and are absent for the A category, which uses much
fewer topic words. The SEG scores also modestly
increase, as small improvements for individual ut-
terances have some influence on the overall output.

To better understand this phenomenon in the
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Figure 2: Feature influences derived by the LIME method for BERT-LSTM models without (left) and with (right)
masking. Positive influence values denote a word is pushing the prediction towards the positive category, and vice
versa for negative ones. Rows represent utterances.

BERT-LSTM model, we applied the LIME feature
analysis method (Ribeiro et al., 2016). Figure 2
illustrates the results for two utterances.

For the first utterance, we see that after masking,
the model relies much more on the word decision
than on the domain-specific words chip or print. In
this case masking corrected the output of the model
from 0 to 1. In the second utterance, however,
shifting the focus from the domain-specific backup
to the more general Are we going to phrase, while
seemingly desirable, causes a mistake changing
the prediction from 1 to 0. We hypothesize this is
due to lack of data to learn all decision indicative
phrases properly. These insights and the results in
Table 3 suggest that masking does, to an extent,
mitigate the topic bias problems, but that small
dataset size is still hindering performance.

6 Conclusion

We have explored the problem of topic bias in de-
tecting decision dialogue acts (DDAs). In particu-
lar, we have identified bias for the Issue and Resolu-
tion types of DDAs. We experimented with mitigat-
ing the bias by manually identifying and removing
topic related words and our main finding is that,
while this partially mitigates the bias issues and
sometimes even improves performance. However,
to further confirm these findings more experiments
on other, larger data data sets are required.

There are several avenues of future work. These
include exploring models that capture speakers,
using non-decision dialogue acts as additional
information, or pretraining language models on
decision-related sentences. The immediate direc-

tion, however, is to increase the size of DDA anno-
tated data and include a more diverse set of topics.
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