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Abstract
We often use perturbations to regularize
neural models. For neural encoder-decoders,
previous studies applied the scheduled
sampling (Bengio et al., 2015) and adversarial
perturbations (Sato et al., 2019) as perturba-
tions but these methods require considerable
computational time. Thus, this study addresses
the question of whether these approaches are
efficient enough for training time. We compare
several perturbations in sequence-to-sequence
problems with respect to computational time.
Experimental results show that the simple
techniques such as word dropout (Gal and
Ghahramani, 2016) and random replacement
of input tokens achieve comparable (or better)
scores to the recently proposed perturba-
tions, even though these simple methods
are faster. Our code is publicly available at
https://github.com/takase/rethink_perturbations.

1 Introduction

Recent advances in neural encoder-decoders
have driven tremendous success for sequence-
to-sequence problems including machine transla-
tion (Sutskever et al., 2014), summarization (Rush
et al., 2015), and grammatical error correction
(GEC) (Ji et al., 2017). Since neural models can be
too powerful, previous studies have proposed vari-
ous regularization methods to avoid over-fitting.

To regularize neural models, we often apply a
perturbation (Goodfellow et al., 2015; Miyato et al.,
2017), which is a small difference from a correct
input. During the training process, we force the
model to output the correct labels for both per-
turbed inputs and unmodified inputs. In sequence-
to-sequence problems, existing studies regard the
following as perturbed inputs: (1) sequences con-
taining tokens replaced from correct ones (Bengio
et al., 2015; Cheng et al., 2019), (2) embeddings
injected small differences (Sato et al., 2019). For
example, Bengio et al. (2015) proposed the sched-
uled sampling that samples a token from the output

probability distribution of a decoder and uses it as
a perturbed input for the decoder. Sato et al. (2019)
applied an adversarial perturbation, which signif-
icantly increases the loss value of a model, to the
embedding spaces of neural encoder-decoders.

Those studies reported that their methods are ef-
fective to construct robust encoder-decoders. How-
ever, their methods are much slower than the train-
ing without using such perturbations because they
require at least one forward computation to obtain
the perturbation. In fact, we need to run the de-
coder the same times as the required number of
perturbations in the scheduled sampling (Bengio
et al., 2015). For adversarial perturbations (Sato
et al., 2019), we have to compute the backpropa-
gation in addition to forward computation because
we use gradients to obtain perturbations.

Those properties seriously affect the training
budget. For example, it costs approximately 1,800
USD for each run when we train Transformer (big)
with adversarial perturbations (Sato et al., 2019)
on the widely used WMT English-German training
set in AWS EC21. Most studies conduct multiple
runs for the hyper-parameter search and/or model
ensemble to achieve better performance (Barrault
et al., 2019), which incurs a tremendous amount
of training budget for using such perturbations.
Strubell et al. (2019) and Schwartz et al. (2019) in-
dicated that recent neural approaches increase com-
putational costs substantially, and they encouraged
exploring a cost-efficient method. For instance, Li
et al. (2020) explored a training strategy to obtain
the best model in a given training time. However,
previous studies have paid little attention to the
costs of computing perturbations.

Thus, we rethink a time efficient perturbation
method. In other words, we address the question
whether perturbations proposed by recent studies as
effective methods are time efficient. We compare

1We assume that we use on-demand instances having 8
V100 GPUs.

https://github.com/takase/rethink_perturbations
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several perturbation methods for neural encoder-
decoders in terms of computational time. We in-
troduce light computation methods such as word
dropout (Gal and Ghahramani, 2016) and using ran-
domly sampled tokens as perturbed inputs. These
methods are sometimes regarded as baseline meth-
ods (Bengio et al., 2015), but experiments on trans-
lation datasets indicate that these simple methods
surprisingly achieve comparable scores to those
of previous effective perturbations (Bengio et al.,
2015; Sato et al., 2019) in a shorter training time.
Moreover, we indicate that these simple methods
are also effective for other sequence-to-sequence
problems: GEC and summarization.

2 Definition of Encoder-Decoder

In this paper, we address sequence-to-sequence
problems such as machine translation with neural
encoder-decoders, and herein we provide a defini-
tion of encoder-decoders.

In sequence-to-sequence problems, neural
encoder-decoders generate a sequence correspond-
ing to an input sequence. Let x1:I and y1:J be
input and output token sequences whose lengths
are I and J , respectively: x1:I = x1, ..., xI and
y1:J = y1, ..., yJ . Neural encoder-decoders com-
pute the following conditional probability:

p(Y |X) =
J+1∏
j=1

p(yj |y0:j−1,X), (1)

where y0 and yJ+1 are special tokens representing
beginning-of-sentence (BOS) and end-of-sentence
(EOS) respectively,X = x1:I , and Y = y1:J+1.

In the training phase, we optimize the param-
eters θ to minimize the negative log-likelihood
in the training data. Let D be the training data
consisting of a set of pairs of Xn and Yn: D =

{(Xn,Yn)}|D|n=1. We minimize the following loss
function:

L(θ) = − 1

|D|
∑

(X,Y )∈D

log p(Y |X;θ). (2)

3 Definition of Perturbations

This section briefly describes perturbations used
in this study. This study focuses on three types
of perturbations: word replacement, word dropout,
and adversarial perturbations. Figure 1 shows
perturbations used in this study. As shown in this
figure, we can use all types of perturbations in the
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Figure 1: Overview of perturbations used in this study.
We can combine perturbations as shown in this figure
because each type of perturbation is orthogonal.

same time because perturbations are orthogonal to
each other. In fact, we combine word replacement
with word dropout in our experiments.

3.1 Word Replacement: REP

For any approach that uses a sampled token in-
stead of a correct token, such as the scheduled
sampling (Bengio et al., 2015), we refer to this as
a word replacement approach. In this approach,
we construct a new sequence whose tokens are ran-
domly replaced with sampled tokens. For the con-
struction from the sequenceX , we sample x̂i from
a distribution Qxi and use it for the new sequence
X ′ with the probability α:

x̂i ∼ Qxi , (3)

x′i =

{
xi with probability α

x̂i with probability 1− α.
(4)

We construct Y ′ from the sequence Y in the same
manner.

Bengio et al. (2015) used a curriculum learning
strategy to adjust α, and thus proposed several func-
tions to decrease α based on the training step. Their
strategy uses correct tokens frequently at the begin-
ning of training, whereas it favors sampled tokens
frequently at the end of training. We also adjust α
with their use of the inverse sigmoid decay:

αt = max

(
q,

k

k + exp( tk )

)
(5)

where q and k are hyper-parameters. In short, αt

decreases to q from 1, depending on the training
step t. We use αt as α at t.

For Qxi , we prepare three types of distributions:
conditional probability, uniform, and similarity.
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Conditional Probability: REP(SS) Bengio et al.
(2015) proposed the scheduled sampling which
uses predicted tokens during training to address
the gap between training and inference. Formally,
the scheduled sampling uses the following condi-
tional probability as Qyi :

p(ŷi|y′0:i−1,X). (6)

Since the scheduled sampling is the method to com-
pute the perturbation for the decoder side only, it
uses the correct sequence as the input of the en-
coder side. In other words, the scheduled sampling
does not provide any function for Qxi .

The original scheduled sampling repeats the de-
coding for each of the tokens on the decoder side,
and thus, requires computational time in proportion
to the length of the decoder-side input sequence.
To address this issue, Duckworth et al. (2019) pro-
posed a more time efficient method: parallel sched-
uled sampling which computes output probability
distributions corresponding to each position simul-
taneously. In this study, we use parallel scheduled
sampling instead of the original method.

Uniform: REP(UNI) The scheduled sampling is
slow even if we use parallel scheduled sampling
because it requires decoding at least once to com-
pute Equation (6). Thus, we introduce two faster
methods to explore effective perturbations from
the perspective of computational time. In uniform,
we use the uniform distributions on each vocab-
ulary as Qxi and Qyi , respectively. For example,
we randomly pick up a token from the source-side
vocabulary and use the token as x̂i in Equation
(4) to construct the source-side perturbed input.
This method is used as the baseline in the previous
study (Bengio et al., 2015).

Similarity: REP(SIM) We also explore more so-
phisticated way than the uniform distribution. We
assume that the conditional probability of Equa-
tion (6) assigns high probabilities to tokens that are
similar to the correct input token. Based on this as-
sumption, we construct a distribution that enables
us to sample similar tokens frequently. Let Vx be
the source-side vocabulary, Ex ∈ R|Vx|×dx be the
dx dimensional embedding matrix, and e(xi) be
the function returning the embedding of xi. We use
the following probability distribution as Qxi :

softmax(Exe(xi)), (7)

where softmax(.) is the softmax function. Thus,
Equation (7) assigns high probabilities to tokens

whose embeddings are similar to e(xi). In other
words, Equation (7) is the similarity against xi
without considering any context. We compute the
probability distribution for the target side by using
e(yi) in the same manner.

3.2 Word Dropout: WDROP

We apply the word dropout technique to compute
the perturbed input. Word dropout randomly uses
the zero vector instead of the embedding e(xi) for
the input token xi (Gal and Ghahramani, 2016):

bxi ∼ Bernoulli(β), (8)

WDrop(xi, bxi) = bxie(xi), (9)

where Bernoulli(β) returns 1 with the probability
β and 0 otherwise. Thus, WDrop(xi, bxi) returns
e(xi) with the probability β and the zero vector
otherwise. We apply Equation (9) to each token in
the input sequence. Then, we use the results as the
perturbed input.

3.3 Adversarial Perturbation: ADV

Miyato et al. (2017) proposed a method to com-
pute adversarial perturbations in the embedding
space. Their method adds adversarial perturbations
to input embeddings instead of replacing correct
input tokens with others. Sato et al. (2019) applied
this approach to neural encoder-decoders and re-
ported its effectiveness. Thus, this study follows
the methods used in Sato et al. (2019).

The method seeks the adversarial perturbation,
which seriously damages the loss value, based on
the gradient of the loss function L(θ). Then, we
add the adversarial perturbation to the input token
embedding. Let rxi ∈ Rdx be the adversarial per-
turbation vector for the input token xi. We obtain
the perturbed input embedding e′(xi) with the fol-
lowing equations:

e′(xi) = e(xi) + rxi , (10)

rxi = ε
cxi

||cxi ||
, (11)

cxi = ∇e(xi)L(θ), (12)

where ε is a hyper-parameter to control the norm
of the adversarial perturbation. We apply the above
equations to all tokens in the input sequence.

3.4 Training

In the training using word replacement and/or word
dropout perturbations, we search the parameters
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predicting the correct output sequence from the per-
turbed input. For example, in the word replacement
approach, we minimize the following negative log-
likelihood:

L′(θ) = − 1

|D|
∑
D

log p(Y |X ′,Y ′;θ),

= − 1

|D|
∑
D

J+1∑
j=1

log p(yj |y′0:j−1,X ′;θ).

(13)

Virtual Adversarial Training When we use ad-
versarial perturbations, we train parameters of the
neural encoder-decoder to minimize both Equation
(2) and a loss functionA(θ) composed of perturbed
inputs:

J (θ) = L(θ) + λA(θ), (14)

where λ is a hyper-parameter to control the balance
of two loss functions. This calculation seems to
be reasonably time efficient because adversarial
perturbations require computing Equation (2).

Sato et al. (2019) used the virtual adversarial
training originally proposed in Miyato et al. (2016)
as a loss function for perturbed inputs. In the virtual
adversarial training, we regard the output probabil-
ity distributions given the correct input sequence
as positive examples:

A(θ) = 1

|D|
∑
D

KL (p(·|X;θ)||p(·|X, r;θ)) ,

(15)

where r represents a concatenated vector of ad-
versarial perturbations for each input token, and
KL(·||·) denotes the Kullback–Leibler divergence.

4 Experiments on Machine Translation

To obtain findings on sequence-to-sequence prob-
lems, we conduct experiments on various situa-
tions: different numbers of training data and multi-
ple tasks. We mainly focus on translation datasets
because machine translation is a typical sequence-
to-sequence problem. We regard the widely used
WMT English-German dataset as a standard set-
ting. In addition, we vary the number of training
data in machine translation: high resource in Sec-
tion 4.2 and low resource in Section 4.3. Table 1
summarizes the number of training data in each
configuration. Moreover, we conduct experiments

Setting Genuine Synthetic
Standard 4.5M -

High Resource 4.5M 20.0M
Low Resource 160K -

Table 1: Sizes of training datasets on our machine trans-
lation experiments.

on other sequence-to-sequence problems: gram-
matical error correction (GEC) in Section 5 and
summarization in Appendix A to confirm whether
the findings from machine translation are applica-
ble to other tasks.

4.1 Standard Setting

Datasets We used the WMT 2016 English-
German training set, which contains 4.5M sentence
pairs, in the same as Ott et al. (2018), and fol-
lowed their pre-processing. We used newstest2013
as a validation set, and newstest2010-2012, and
2014-2016 as test sets. We measured case-sensitive
detokenized BLEU with SacreBLEU (Post, 2018)2.

Methods We used Transformer (Vaswani et al.,
2017) as a base neural encoder-decoder model
because it is known as a strong neural encoder-
decoder model. We used two parameter sizes: base
and big settings in Vaswani et al. (2017).

We applied perturbations described in Section
3 for comparison. For parallel scheduled sam-
pling (Duckworth et al., 2019), we can compute
output probability distributions multiple times but
we used the first decoding result only because it is
the fastest approach. We set q = 0.9, k = 1000,
and β = 0.9. For ADV, we used the same hyper-
parameters as in Sato et al. (2019). Our implemen-
tation is based on fairseq3 (Ott et al., 2019). We
trained each model for a total of 50,000 steps.

Preliminary: To which sides do we apply per-
turbations? As described, perturbations based
on REP(SS) can be applied to the decoder side
only. Sato et al. (2019) reported their method was
the most effective when they applied their ADV to
both encoder and decoder sides. However, we do
not have evidence for suitable sides in applying
other perturbations. Thus, we applied REP(UNI),

2As reported in Ott et al. (2018), the BLEU score
from SacreBLEU is often lower than the score from
multi-bleu.perl but SacreBLEU is suitable for scoring
WMT datasets (Post, 2018).

3https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq
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Method Position 2010 2011 2012 2013 2014 2015 2016 Average
Transformer (base)

w/o perturbation - 24.27 22.06 22.43 26.11 27.13 29.70 34.40 26.59

REP(UNI)
enc 24.26 21.95 22.33 25.76 26.70 29.08 34.61 26.38
dec 24.27 21.99 22.29 26.31 27.28 29.74 34.42 26.61
both 24.30 22.20 22.43 26.06 26.82 29.42 34.13 26.48

REP(SIM)
enc 24.12 22.02 22.14 26.21 27.01 29.33 34.56 26.48
dec 24.32 21.96 22.55 26.36 27.23 29.86 34.33 26.66
both 23.94 21.85 22.29 25.84 26.61 29.50 34.20 26.32

WDROP
enc 24.31 22.12 22.45 26.20 27.09 29.95 34.58 26.67
dec 23.96 22.08 22.22 26.36 27.08 29.91 33.98 26.51
both 24.33 22.14 22.35 26.10 26.82 29.51 34.51 26.54

Transformer (big)
w/o perturbation - 24.22 22.11 22.69 26.60 28.46 30.50 33.58 26.88

REP(UNI)
enc 24.79 22.49 23.10 27.07 28.39 30.52 34.51 27.27
dec 24.33 22.34 22.63 26.93 28.22 30.36 33.41 26.89
both 24.75 22.68 23.32 27.01 28.89 31.38 34.94 27.57

REP(SIM)
enc 24.68 22.91 23.13 27.03 28.25 30.81 34.40 27.32
dec 24.51 22.22 22.83 26.46 28.64 30.68 33.58 26.99
both 24.77 22.50 23.10 26.91 28.98 31.03 34.29 27.37

WDROP
enc 24.60 22.32 23.27 27.07 28.40 31.00 34.61 27.32
dec 24.53 22.33 22.75 27.00 28.56 30.58 33.20 26.99
both 24.92 22.71 23.40 27.11 28.73 30.99 34.80 27.52

REP(UNI)+WDROP both 24.82 22.82 23.38 27.30 28.56 30.65 35.02 27.51
REP(SIM)+WDROP both 24.83 22.95 23.40 27.23 28.65 30.88 35.05 27.57

Table 2: BLEU scores on newstest2010-2016 and averaged scores. Bolds are better scores than w/o perturbations.

REP(SIM), and WDROP to the encoder side, de-
coder side, and both as preliminary experiments.

Table 2 shows BLEU scores on newstest2010-
2016 and averaged scores when we varied the
position of the perturbations. In this table, we
indicate better scores than the original Trans-
former (Vaswani et al., 2017) (w/o perturbation) in
bold. This table shows that it is better to apply word
replacement (REP(UNI) and REP(SIM)) to the de-
coder side in Transformer (base). For WDROP, ap-
plying the encoder side is slightly better than other
positions in Transformer (base). In contrast, apply-
ing perturbations to both sides achieved the best
averaged BLEU scores for all methods in Trans-
former (big). These results imply that it is better
to apply to word replacement and/or word dropout
to both encoder and decoder sides if we prepare
enough parameters for neural encoder-decoders.
Based on these results, we select methods to com-
pare against scheduled sampling (REP(SS)) and
adversarial perturbations (ADV).

Table 2 also shows the results when we com-
bined each word replacement with word dropout
(REP(UNI)+WDROP and REP(SIM)+WDROP).
REP(SIM)+WDROP slightly outperformed the sep-
arated settings.

Results We compare each perturbation in view of
computational time. Table 3 shows BLEU scores

of each method and computational speeds4 based
on Transformer (base) without any perturbations,
i.e., larger is faster. In this table, we indicate the
best score of each column for Transformer (base)
and (big) settings in bold. This table indicates
that Transformer without perturbations achieved
a comparable score to previous studies (Vaswani
et al., 2017; Ott et al., 2018) on newstest2014
in base and big settings. Thus, we consider that
our trained Transformer models (w/o perturbation)
can be regarded as strong baselines. This table
shows that ADV achieved the best averaged score
in Transformer (base), but this method required
twice as much training time as the original Trans-
former (base). In contrast, REP(SIM) and WDROP

achieved comparable scores to ADV although they
slightly affected the computational time. REP(UNI)
also achieved a slightly better averaged score than
the original Transformer (base).

In the Transformer (big) setting, all perturbations
surpassed the performance of w/o perturbation in
the averaged score. REP(SS) and ADV improved
the performance, but other methods outperformed
these two methods with a small training time.
Moreover, REP(UNI) and REP(SIM)+WDROP

achieved the best averaged score.
Figure 2 illustrates the negative log-likelihood

4We regard processed tokens per second as the computa-
tional speed of each method.
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Method Position 2010 2011 2012 2013 2014 2015 2016 Average Speed
Transformer (base)

w/o perturbation - 24.27 22.06 22.43 26.11 27.13 29.70 34.40 26.59 ×1.00
REP(UNI) dec 24.27 21.99 22.29 26.31 27.28 29.74 34.42 26.61 ×0.99
REP(SIM) dec 24.32 21.96 22.55 26.36 27.23 29.86 34.33 26.66 ×0.95
WDROP enc 24.31 22.12 22.45 26.20 27.09 29.95 34.58 26.67 ×1.00
REP(SS) dec 24.18 22.03 22.38 26.04 27.15 29.77 34.24 26.54 ×0.88
ADV both 24.34 22.19 22.58 26.19 27.10 29.78 34.89 26.72 ×0.44

Transformer (big)
w/o perturbation - 24.22 22.11 22.69 26.60 28.46 30.50 33.58 26.88 ×0.60
REP(UNI) both 24.75 22.68 23.32 27.01 28.89 31.38 34.94 27.57 ×0.60
REP(SIM) both 24.77 22.50 23.10 26.91 28.98 31.03 34.29 27.37 ×0.55
WDROP both 24.92 22.71 23.40 27.11 28.73 30.99 34.80 27.52 ×0.60
REP(UNI)+WDROP both 24.82 22.82 23.38 27.30 28.56 30.65 35.02 27.51 ×0.60
REP(SIM)+WDROP both 24.83 22.95 23.40 27.23 28.65 30.88 35.05 27.57 ×0.55
REP(SS) dec 24.44 21.97 22.74 26.77 28.44 30.83 33.71 26.99 ×0.52
ADV both 24.71 22.60 23.23 26.98 28.97 30.49 34.40 27.34 ×0.20

Table 3: BLEU scores on newstest2010-2016, averaged scores, and computational speeds based on Transformer
(base) w/o perturbation. Scores in bold denote the best result for each set for Transformer (base) and (big) settings.

8

(a) Valid NLL (b) BLEU score (c) Time to achieve BLEU score
of Transformer w/o perturbation

Figure 2: Negative log-likelihood (NLL) values, BLEU scores of each method, and time to achieve BLEU score of
Transformer w/o perturbation on validation set (newstest2013).

values and BLEU scores on the validation set for
each training time when we applied each pertur-
bation to Transformer (big). In addition, Figure 2
(c) shows the time required to achieve the BLEU
score of Transformer w/o perturbation on the vali-
dation set (26.60, as described in Table 3). These
figures show that ADV requires twice as much time
or more relative to other methods to achieve per-
formance comparable to others. In NLL curves,
REP(UNI), REP(SIM), and WDROP achieved bet-
ter values than those of Transformer w/o perturba-
tion in the early stage. In addition, WDROP was
the fastest to achieve better NLL value. Figure 2 (c)
indicates that REP(UNI), REP(SIM), and WDROP

achieved 26.60 BLEU score with smaller training
time than that of Transformer w/o perturbation.

These results indicate that we can quickly
improve the performance of Transformer with
REP(UNI), REP(SIM), and WDROP. In particu-

lar, when we prepare a large number of parameters
for Transformer in machine translation, it is better
to use these methods (and their combinations) as
perturbations. We conduct more experiments to
investigate whether these methods are also superior
in other configurations.

4.2 High Resource
We compare each perturbation in the case where
we have a large amount of training data.

Datasets We add synthetic parallel data gener-
ated from the German monolingual corpus using
back-translation (Sennrich et al., 2016a) to the train-
ing data used in Section 4.1. The origin of the
German monolingual corpus is NewsCrawl 2015-
20185. We randomly sampled 5M sentences from
each NewsCrawl corpus, and thus, obtained 20M
sentences in total. We back-translated the corpus

5data.statmt.org/news-crawl/de/

http://data.statmt.org/news-crawl/de/


5773

Method Positions 2010 2011 2012 2013 2014 2015 2016 Average
w/o perturbation - 25.63 23.62 24.54 28.39 31.50 32.96 36.47 29.02
REP(UNI) both 26.36 24.18 25.14 28.54 32.35 33.80 37.73 29.73
REP(SIM) both 26.04 23.79 25.01 28.43 32.06 33.28 37.40 29.43
WDROP both 26.65 24.34 25.18 28.66 32.25 33.75 37.65 29.78
REP(UNI)+WDROP both 26.45 24.07 25.09 28.72 32.21 33.42 37.68 29.66
REP(SIM)+WDROP both 26.55 24.20 25.19 28.55 31.92 33.64 37.96 29.72
REP(SS) dec 25.81 23.64 24.73 28.46 31.84 33.29 36.59 29.19
ADV both 25.79 24.07 24.92 28.64 32.04 33.35 37.20 29.43

Table 4: BLEU scores of each method trained with a large amount of data.

with the German-English translation model, which
is identical to Transformer (big) (w/o perturbation)
used in Section 4.1 except for the direction of trans-
lation. Finally, we prepended a special token 〈BT〉
to the beginning of the source (English) side of the
synthetic data following (Caswell et al., 2019). In
addition, we upsampled the original bitext to adjust
the ratio of the original and synthetic bitexts to 1:1.

Methods In this setting, we increase the param-
eter size of Transformer from the (big) setting to
take advantage of large training data. Specifically,
we increased the internal layer size of the FFN part
from 4096 to 8192, and used 8 layers for both the
encoder and decoder. The other hyper-parameters
are same as in Section 4.1.

Results Table 4 shows BLEU scores of each
method when we used a large amount of train-
ing data. This table indicates that all pertur-
bations outperformed Transformer w/o perturba-
tion in all test sets. Moreover, the fast methods
REP(UNI), REP(SIM), WDROP, and their combi-
nations achieved the same or better averaged scores
than REP(SS) and ADV. Thus, these methods are
not only fast but also significantly improve the per-
formance of Transformer. In particular, since Table
3 shows that REP(UNI) and WDROP barely have
any negative effect on the computational time, we
consider them as superior methods.

4.3 Low Resource
Datasets We also conduct an experiment on a low
resource setting. We used IWSLT 2014 German-
English training set which contains 160k sentence
pairs. We followed the preprocessing described in
fairseq6 (Ott et al., 2019). We used dev2010,
2012, and tst2010-2012 as a test set.

Methods In this setting, we reduced the parame-
ter size of Transformer from the (base) setting. We
reduced the internal layer size of the FFN part from

github.com/pytorch/fairseq/tree/master/examples/translation

Method Position BLEU
w/o perturbation - 35.22
REP(UNI) both 35.53
REP(SIM) both 35.49
WDROP both 35.64
REP(SS) dec 35.49
ADV both 36.09

×2 training steps
REP(UNI) both 35.81
REP(SIM) both 35.96
WDROP both 36.06
REP(UNI)+WDROP both 36.20
REP(SIM)+WDROP both 36.22

Table 5: BLEU scores in the low resource setting.

2048 to 1024. We used the same values for other
hyper-parameters as in Section 4.1.

Results Table 5 shows BLEU scores of each
method on the low resource setting. We trained
three models with different random seeds for each
method, and reported the averaged scores. In this
table, we also report the results of REP(UNI),
REP(SIM), WDROP, and their combinations
trained with twice the number of updates (below
×2 training steps). This table shows that all pertur-
bations also improved the performance from Trans-
former w/o perturbation. In contrast to Tables 3 and
4, ADV achieved the top score when each model
was trained with the same number of updates.

However, as reported in Section 4.1, ADV re-
quires twice or more as long as other perturbations
for training. Thus, when we train Transformer with
other perturbations with twice the number of up-
dates, the training time is almost equal. In the com-
parison of (almost) equal training time, WDROP

achieved a comparable score to ADV. Moreover,
REP(UNI)+WDROP and REP(SIM)+WDROP7 out-
performed ADV. Thus, in this low resource setting,
REP(UNI)+WDROP and REP(SIM)+WDROP are
slightly better than ADV in computational time.

7In the low resource setting, we applied only WDROP to an
encoder side for REP(UNI)+WDROP and REP(SIM)+WDROP
because the configuration achieved better performance than
applying both perturbations to both sides.

https://github.com/pytorch/fairseq/tree/master/examples/translation
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Method 0.00 0.01 0.05 0.10
w/o perturbation 26.88 25.81 21.94 17.80
REP(UNI) 27.57 26.58 23.14 18.93
REP(SIM) 27.37 26.95 25.34 23.13
WDROP 27.52 26.48 22.84 18.56
REP(UNI)+WDROP 27.51 26.55 23.18 19.05
REP(SIM)+WDROP 27.57 27.15 25.60 23.58
REP(SS) 26.99 25.89 22.08 17.93
ADV 27.34 26.32 22.43 18.08

Table 6: Averaged BLEU scores on newstest2010-2016
when we inject perturbations to a source sentence with
each ratio.

4.4 Results on Perturbed Inputs

Recent studies have used perturbations, especially
adversarial perturbations, to improve the robustness
of encoder-decoders (Sato et al., 2019; Cheng et al.,
2019; Wang et al., 2019). In particular, Cheng et al.
(2019) analyzed the robustness of models trained
with their adversarial perturbations over perturbed
inputs. Following them, we also investigate the
robustness of our trained Transformer (big) models.

We constructed perturbed inputs by replacing
words in source sentences based on pre-defined ra-
tio. If the ratio is 0.0, we use the original source
sentences. In contrast, if the ratio is 1.0, we use the
completely different sentences as source sentences.
We set the ratio 0.01, 0.05, and 0.10. In this pro-
cess, we replaced a randomly selected word with a
word sampled from vocabulary based on uniform
distribution. We applied this procedure to source
sentences in newstest2010-2016.

Table 6 shows averaged BLEU scores8 of each
method on perturbed newstest2010-2016. These
BLEU scores are calculated against the original
reference sentences. This table indicates that all
perturbations improved the robustness of the Trans-
former (big) because their BLEU scores are bet-
ter than one in the setting w/o perturbation. In
comparison among perturbations, REP(SIM) (and
REP(SIM)+WDROP) achieved significantly better
scores than others on perturbed inputs. We empha-
size that REP(SIM) surpassed ADV even though
ADV is originally proposed to improve the robust-
ness of models. This result implies that REP(SIM)
is effective to construct robust models as well as to
improve the performance.

8For more details, Tables 10, 11, and 12 in Appendix show
BLEU scores on each perturbed input.

Method Pos Valid Test CoNLL
w/o perturbation - 47.25 64.74 61.62
REP(UNI) both 47.77 64.67 62.22
REP(SIM) both 47.58 64.51 62.29
WDROP both 48.53 65.47 62.22
REP(UNI)+WDROP both 48.58 65.94 62.33
REP(SIM)+WDROP both 48.72 65.97 62.29
REP(SS) dec 47.84 65.18 62.30
ADV both 48.17 65.90 62.23
Kiyono et al. (2020) - - 65.0 62.2

Table 7: F0.5 scores of each method. The row of Kiyono
et al. (2020) represents the reported scores of the model
trained with the same configuration.

5 Experiments on GEC

Datasets Following Kiyono et al. (2020), we
used a publicly available dataset from the BEA
shared task (Bryant et al., 2019). This dataset con-
tains training, validation, and test splits. We also
used the CoNLL-2014 test set (CoNLL) (Ng et al.,
2014) as an additional test set. We report F0.5 score
measured by the ERRANT scorer (Bryant et al.,
2017; Felice et al., 2016) for the BEA dataset and
M2 scorer (Dahlmeier and Ng, 2012) for CoNLL.

Methods We used the same settings as Kiyono
et al. (2020). Specifically, we trained Transformer
(big) model w/o perturbation on the same parallel
pseudo data provided by Kiyono et al. (2020), and
then fine-tuned the model with perturbations. The
hyper-parameters for perturbations are the same as
those described in Section 4.1.

Results Table 7 shows the results of each method.
This table reports the averaged score of five models
trained with different random seeds. Moreover, we
present the scores of Kiyono et al. (2020); our “w/o
perturbation” model is a rerun of their work, that
is, the experimental settings are identical9.

Table 7 shows that all perturbations improved
the scores except for REP(UNI) and REP(SIM) in
the BEA test set (Test). Similar to the machine
translation results, the simple methods WDROP,
REP(UNI)+WDROP, and REP(SIM)+WDROP

achieved comparable scores to ADV. Thus, these
faster methods are also effective for the GEC task.

6 Related Work

Word Replacement The naive training method
of neural encoder-decoders has a discrepancy be-
tween training and inference; we use the correct

9The scores of w/o perturbation are slightly worse than
Kiyono et al. (2020). We consider that this is due to random-
ness in the training procedure.
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tokens as inputs of the decoder in the training phase
but use the token predicted at the previous time step
as an input of the decoder in the inference phase. To
address this discrepancy, Bengio et al. (2015) pro-
posed the scheduled sampling that stochastically
uses the token sampled from the output probability
distribution of the decoder as an input instead of
the correct token. Zhang et al. (2019) modified
the sampling method to improve the performance.
In addition, Duckworth et al. (2019) refined the
algorithm to be suited to Transformer (Vaswani
et al., 2017). Their method is faster than the orig-
inal scheduled sampling but slower and slightly
worse than more simple replacement methods such
as REP(UNI) and REP(SIM) in our experiments.
Xie et al. (2017) and Kobayashi (2018) used the un-
igram language model and neural language model
respectively to sample tokens for word replace-
ment. In this study, we ignored contexts to simplify
the sampling process, and indicated that such sim-
ple methods are effective for sequence-to-sequence
problems.

Word Dropout Gal and Ghahramani (2016) ap-
plied word dropout to a neural language model
and it is a common technique in language model-
ing (Merity et al., 2018; Yang et al., 2018; Takase
et al., 2018). Sennrich and Zhang (2019) reported
that word dropout is also effective for low resource
machine translation. However, word dropout has
not been commonly used in the existing sequence-
to-sequence systems. Experiments in this study
show that word dropout is not only fast but also
contributes to improvement of scores in various
sequence-to-sequence problems.

Adversarial Perturbations Adversarial pertur-
bations were first discussed in the field of image
processing (Szegedy et al., 2014; Goodfellow et al.,
2015). In the NLP field, Miyato et al. (2017) ap-
plied adversarial perturbations to an embedding
space and reported its effectiveness on text classi-
fication tasks. In sequence-to-sequence problems,
Wang et al. (2019) and Sato et al. (2019) applied
adversarial perturbations to embedding spaces in
neural encoder-decoders. Moreover, Sato et al.
(2019) used virtual adversarial training (Miyato
et al., 2016) in training of their neural encoder-
decoders. Cheng et al. (2019) computed token-
level adversarial perturbations in machine transla-
tion. In other words, they introduced the strategy
of adversarial perturbations into word replacement.

Their method is also effective but requires more
computational time than Wang et al. (2019) and
Sato et al. (2019) because it runs language models
to obtain candidate tokens for perturbations.

7 Conclusion

We compared perturbations for neural encoder-
decoders in view of computational time. Exper-
imental results show that simple techniques such
as word dropout (Gal and Ghahramani, 2016) and
random replacement of input tokens achieved com-
parable scores to sophisticated perturbations: the
scheduled sampling (Bengio et al., 2015) and adver-
sarial perturbations (Sato et al., 2019), even though
those simple methods are faster. In the low re-
source setting in machine translation, adversarial
perturbations achieved high BLEU score but those
simple methods also achieved comparable scores
to the adversarial perturbations when we spent al-
most the same time for training. For the robustness
of trained models, REP(SIM) is superior to others.
This study indicates that simple methods are suf-
ficiently effective, and thus, we encourage using
such simple perturbations as a first step. In addi-
tion, we hope for researchers of perturbations to
use the simple perturbations as baselines to make
the usefulness of their proposed method clear.
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A Experiments on Summarization

We conduct experiments on two summarization
datasets: Annotated English Gigaword (Napoles
et al., 2012; Rush et al., 2015) and DUC 2004 task
1 (Over et al., 2007).

A.1 Annotated English Gigaword

Datasets We used sentence-summary pairs
extracted from Annotated English Giga-
word (Napoles et al., 2012; Rush et al., 2015) as
the summarization dataset. This dataset contains
3.8M sentence-summary pairs as the training
set and 1951 pairs as the test set. We extracted
3K pairs from the original validation set, which
contains 190K pairs, for our validation set.

In summarization, most recent studies used large
scale corpora to pre-train their neural encoder-
decoder (Dong et al., 2019; Song et al., 2019;
Zhang et al., 2020; Qi et al., 2020). Thus, we
also augmented the training data. We extracted
the first sentence and headline of a news article
in REALNEWS (Zellers et al., 2019) and News
Crawl (Barrault et al., 2019) as sentence-summary
pairs. In total, we used 17.1M sentence-summary
pairs as our training data.

We used BPE (Sennrich et al., 2016b) to con-
struct a vocabulary set. We set the number of BPE
merge operations at 32K and shared the vocabulary
between both the encoder and decoder sides.

Methods We followed the configuration in Sec-
tion 4.2 because it seems suitable for a large
amount of training data. We used the same per-
turbations and hyper-parameters as in Section 4.2.

Results Table 8 shows the ROUGE F1 scores of
each method and scores reported in recent stud-
ies (Dong et al., 2019; Song et al., 2019; Zhang
et al., 2020; Qi et al., 2020) In this experiment,
we cannot report the result of ADV because the
loss value of ADV exploded during training. We
tried several random seeds for ADV, but all models
failed to converge. Since we need a huge amount
of budget to search more suitable hyper-parameters
for ADV in this summarization dataset, we consider
that it is impractical to report the result of ADV.

Table 8 indicates that all perturbations im-
proved the ROUGE score. In addition, REP(UNI),
REP(SIM), WDROP, and their combinations out-
performed the scheduled sampling. Thus, these
fast methods are also superior perturbations in the
summarization task. Moreover, REP(UNI) and

Method Position R-1 R-2 R-L
w/o perturbation - 39.20 19.84 36.21
REP(UNI) both 39.81 20.40 36.93
REP(SIM) both 39.70 20.14 36.77
WDROP both 39.66 20.45 36.59
REP(UNI)+WDROP both 39.36 20.13 36.62
REP(SIM)+WDROP both 39.56 20.14 36.66
REP(SS) dec 39.20 20.04 36.27
Dong et al. (2019) - 38.45 19.45 35.75
Song et al. (2019) - 38.73 19.71 35.96
Zhang et al. (2020) - 39.12 19.86 36.24
Qi et al. (2020) - 39.51 20.42 36.69

Table 8: F1 values of ROUGE-1, 2, and L (R-1, R-2,
and R-L respectively) on the test set extracted from
Annotated English Gigaword. The lower part represents
the scores reported by recent studies.

WDROP outperformed the current top score (Qi
et al., 2020) in ROUGE-1, L and ROUGE-2 respec-
tively.

A.2 DUC 2004 Task 1
Datasets We used sentence-summary pairs
extracted from Annotated English Giga-
word (Napoles et al., 2012; Rush et al., 2015) and
News Crawl (Barrault et al., 2019) as our training
dataset, which contains 10.1M pairs. Following
recent studies (Takase and Okazaki, 2019; Takase
and Kobayashi, 2020), we used BPE to construct a
vocabulary set for the encoder side and characters
as vocabulary for the decoder side. We set the
number of BPE merge operations at 16K.

For the test set, we used the DUC 2004 task
1 dataset (Over et al., 2007) which contains 500
source sentences and four kinds of manually con-
structed reference summaries. We truncated char-
acters over 75 bytes in each generated summary
based on the official configuration.

Methods We used the Transformer (big) setting
in this experiment. In addition, we introduced the
output length control method proposed by Takase
and Okazaki (2019). We used the same perturba-
tions and hyper-parameters as in Section 4.1.

Results Table 8 shows recall-based ROUGE
scores of each method and scores reported in re-
cent studies (Rush et al., 2015; Suzuki and Na-
gata, 2017; Takase and Okazaki, 2019; Takase and
Kobayashi, 2020). We also cannot report the re-
sult of ADV for the same reason as described in
Appendix A.1.

This table indicates that REP(SIM), WDROP,
and their combination improved the ROUGE
scores. In particular, REP(SIM)+WDROP outper-
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Method Position R-1 R-2 R-L
w/o perturbation - 32.80 11.55 28.26
REP(UNI) both 32.56 11.48 28.21
REP(SIM) both 32.80 11.55 28.28
WDROP both 33.06 11.45 28.51
REP(UNI)+WDROP both 32.15 11.58 28.01
REP(SIM)+WDROP both 32.80 11.73 28.46
REP(SS) dec 32.83 11.41 28.14
Rush et al. (2015) - 28.18 8.49 23.81
Suzuki and Nagata (2017) - 32.28 10.54 27.80
Takase and Okazaki (2019) - 32.29 11.49 28.03
Takase and Kobayashi (2020) - 32.57 11.63 28.24

Table 9: Recall-based ROUGE-1, 2, and L (R-1, R-2, and R-L respectively) on DUC 2004 task 1 test set. The lower
part represents the scores reported by recent studies.

formed the current top score in ROUGE-1, 2, and
L. Moreover, WDROP achieved better ROUGE-1
and L scores than the current top score. In contrast,
REP(UNI) slightly harmed the performance in this
configuration. These results indicate that WDROP

and REP(SIM) are also effective for summarization
tasks.
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Method Positions 2010 2011 2012 2013 2014 2015 2016 Average
w/o perturbation - 23.37 21.23 21.89 25.56 26.97 29.34 32.32 25.81
REP(UNI) both 23.88 21.85 22.48 26.23 27.81 30.21 33.61 26.58
REP(SIM) both 24.51 22.24 22.82 26.53 28.44 30.43 33.68 26.95
WDROP both 24.01 21.90 22.48 26.24 27.60 29.71 33.44 26.48
REP(UNI)+WDROP both 23.85 22.03 22.69 26.63 27.50 29.56 33.60 26.55
REP(SIM)+WDROP both 24.47 22.61 23.15 26.88 28.24 30.14 34.53 27.15
REP(SS) dec 23.49 21.18 21.82 25.79 27.17 29.39 32.38 25.89
ADV both 23.94 21.70 22.46 25.99 27.71 29.28 33.13 26.32

Table 10: BLEU scores when we inject perturbations to a source sentence with 0.01.

Method Positions 2010 2011 2012 2013 2014 2015 2016 Average
w/o perturbation - 19.78 18.51 18.70 21.58 22.74 24.81 27.45 21.94
REP(UNI) both 21.02 19.38 19.67 22.76 23.85 26.08 29.24 23.14
REP(SIM) both 23.13 21.13 21.60 24.98 26.69 28.38 31.49 25.34
WDROP both 20.94 19.24 19.44 22.41 23.67 25.42 28.74 22.84
REP(UNI)+WDROP both 20.99 19.64 19.93 22.89 23.77 25.64 29.40 23.18
REP(SIM)+WDROP both 23.20 21.55 21.87 25.53 26.50 28.49 32.05 25.60
REP(SS) dec 20.06 18.58 18.90 21.92 23.01 24.59 27.51 22.08
ADV both 20.45 18.91 19.10 22.02 23.50 24.97 28.05 22.43

Table 11: BLEU scores when we inject perturbations to a source sentence with 0.05.

Method Positions 2010 2011 2012 2013 2014 2015 2016 Average
w/o perturbation - 16.21 15.03 15.31 17.82 17.76 19.91 22.57 17.80
REP(UNI) both 17.24 15.84 16.39 18.62 19.30 21.45 23.64 18.93
REP(SIM) both 21.15 19.18 19.79 22.95 23.91 26.19 28.73 23.13
WDROP both 16.79 15.54 16.06 18.35 18.68 20.57 23.96 18.56
REP(UNI)+WDROP both 17.53 16.00 16.41 18.95 19.40 21.03 24.01 19.05
REP(SIM)+WDROP both 21.58 19.86 20.10 23.50 24.22 26.27 29.55 23.58
REP(SS) dec 16.31 15.21 15.18 18.01 18.11 20.00 22.69 17.93
ADV both 16.47 15.24 15.50 18.01 18.07 19.84 23.44 18.08

Table 12: BLEU scores when we inject perturbations to a source sentence with 0.10.


