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Abstract

Knowledge selection is an important and chal-
lenging task which could provide the appropri-
ate knowledge for informative dialogue gen-
eration. However, the needed gold knowl-
edge label is difficult to collect in reality. In
this paper, we study knowledge selection for
dialogue generation in the unsupervised sce-
nario and propose a novel Distilled Distant
Supervision Loss (DDSL) to supervise knowl-
edge selection when the gold knowledge la-
bel is unknown. Specifically, we first obtain
an oracle knowledge label via distant super-
vision and then leverage knowledge distilla-
tion to alleviate the noisy labeling problem
of distant supervision. Furthermore, we pro-
pose a pretraining-finetuning strategy to deal
with the mismatch knowledge selection prob-
lem that models tend to select the mismatched
knowledge for dialogue generation in the un-
supervised setting and will cause the degen-
eration of knowledge-aware decoder. Exper-
iments on two knowledge-grounded dialogue
datasets show that our approach manages to se-
lect knowledge more accurately in the unsuper-
vised setting and generates more informative
responses, even outperforming many strong su-
pervised baselines.1

1 Introduction

To avoid general and dull dialogue generation (Li
et al., 2016), knowledge-grounded dialogue which
equips dialogue systems with external knowledge
has become a popular research topic. Thanks to
the hand-collected knowledge-grounded dialogue
datasets which align each dialogue (even each utter-
ance) with a pre-identified document (Zhang et al.,
2018; Zhou et al., 2018; Moghe et al., 2018; Zhou
et al., 2020), many researchers focus on inject-
ing the given knowledge to generate informative
responses and achieve promising results (Yavuz

1The codes and model checkpoints will be available at
https://github.com/ErenChan/UKSDG

et al., 2019; Tang and Hu, 2019; Qin et al., 2019a;
Li et al., 2019b; Zheng and Zhou, 2019; Meng
et al., 2019; Ren et al., 2019; Ye et al., 2020; Lin
et al., 2020). However, they usually need the pre-
identified knowledge and the knowledge access
task is less studied (Kim et al., 2020b) which is
the precursor to knowledge dialogue generation in
reality (Zheng et al., 2020).

It is natural to extract the external knowledge via
information retrieval technology. Several works re-
gard the retrieved knowledge sentences as the pre-
identified document (Ghazvininejad et al., 2018;
Michel Galley, 2018; Yang et al., 2019b; Gopalakr-
ishnan et al., 2019). However, the retrieved docu-
ment contains redundant and irrelevant informa-
tion which are harmful for dialogue generation
(Zhao et al., 2020b). Hence, knowledge selection
which chooses an appropriate sentence from the
pre-retrieved knowledge pool gains much attention
and it plays the role of knowledge access for gener-
ation. Dinan et al. (2019) first propose knowledge
selection for dialogue generation which are two
sequential subtasks and the generation is based on
the selected knowledge. Several works follow their
setting and achieve improvements with latent vari-
able models (Kim et al., 2020a; Chen et al., 2020b)
or more complex selection mechanism (Niu et al.,
2019; Meng et al., 2020; Zheng et al., 2020; Meng
et al., 2021). Although those works show promis-
ing performance with explicit use of knowledge in
open-domain dialogue, they still need gold knowl-
edge labels to train the selection module well (Kim
et al., 2020a). And it is still less studied to make
knowledge selection work well without gold knowl-
edge label, which is valuable and challenging.

In this paper, we explore knowledge selection
for dialogue generation in the unsupervised sce-
nario and propose a novel Distilled Distant Su-
pervision Loss (DDSL) to supervise knowledge
selection when there is no gold knowledge label.
Specifically, we first obtain an oracle knowledge

mailto:hugheren.chan@gmail.com 
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mailto:fandongmeng@tencent.com
mailto:patrickpli@tencent.com
mailto:withtomzhou@tencent.com
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label via distant supervision (Mintz et al., 2009)
to substitute the gold one in the unsupervised set-
ting. However, distant supervision inevitably suf-
fers from the noisy labeling problem due to liter-
ally matching (Yang et al., 2019a). Therefore, to
train knowledge selection well without gold label,
we leverage knowledge distillation to reduce the
noise of the oracle label. Furthermore, we find
that models tend to select the mismatched knowl-
edge for dialogue generation in the unsupervised
setting. And forcing the knowledge-aware decoder
to leverage the selected knowledge at training will
cause the decoder degenerating into the knowledge-
independent decoder. To deal with this problem,
we propose to pretrain the knowledge selection and
response generation independently and then fine-
tune the decoder with the selected knowledge using
different sample weighting scores. We demonstrate
the effectiveness of our unsupervised approach on
two knowledge-grounded dialogue datasets, i.e.,
Wizard of Wikipedia (Dinan et al., 2019) and Holl-
E (Moghe et al., 2018) in comparison with various
supervised and unsupervised baselines.

Our contributions are summarized as follows:

• We propose Distilled Distant Supervision
Loss to make knowledge selection work well
in the unsupervised scenario where the gold
knowledge label is not available.

• We propose a pretraining-finetuning strategy
to alleviate the degeneration of knowledge-
aware decoder caused by the mismatch knowl-
edge selection problem.

• Results on two datasets show that our ap-
proach manages to select knowledge more ac-
curately in the unsupervised setting and even
generates more informative responses than
many strong supervised baselines.

2 Approach

2.1 Task Formulation
Given the utterance xt at each turn t and the associ-
ated knowledge pool Kt = {kit} = {k1t , · · · , kLt }2

containing L retrieved candidate sentences kit, the
final goal is to generate an informative response
yt. Following (Dinan et al., 2019), we first learn
to select the appropriate knowledge kst from the
knowledge pool Kt and then generate the response

2ki
t, ks

t , kt and k′t indicate any, selected, gold and oracle
knowledge sentences or labels, respectively.

yt by incorporating the selected knowledge. In the
conventional supervised setting, there exists gold
knowledge label to supervise knowledge selection.
However, the manually labeled knowledge is dif-
ficult to obtain in reality (Lian et al., 2019). As a
result, we study the unsupervised knowledge selec-
tion for dialogue generation in this paper, which is
very valuable and challenging.

2.2 Architecture Overview

In the following subsections, we first introduce
the three major components (Section 2.3 ∼ 2.5):
Encoder, Knowledge Selection (KS) and Decoder,
which are trained jointly with the gold knowledge
loss and response generation loss in the conven-
tional supervised setting, as Figure 1 (a) shows.
Then we introduce our Distilled Distant Supervi-
sion Loss (DDSL) in Section 2.6 to train knowledge
selection well in the unsupervised setting, which
consists of distant supervision and knowledge distil-
lation, as Figure 1 (b) shows. Finally, we detail the
mismatch knowledge selection problem and how to
make the decoder leverage the selected knowledge
kst well in Section 2.7.

2.3 Encoder

For each sentence st, we obtain the context aware
word representations Hst via BERT (Devlin et al.,
2019) and the corresponding sentence representa-
tion hst via Mean Pooling (Cer et al., 2018):

Hst = BERT (st) ∈ RNst×d

hst = Mean
(
Hst

)
∈ Rd

, (1)

whereNst is the sentence length and d is the hidden
size. Specifically, we represent the utterance xt
with Hxt and hxt , and represent each knowledge
sentence kit ∈ Kt with Hkit

and hkit .

2.4 Knowledge Selection

In this paper, we mainly focus on knowledge se-
lection in the unsupervised setting and adopt the
standard dot-product attention over the knowledge
candidates to select knowledge (Dinan et al., 2019).

Selection Query: The selection query consists
of the current utterance, the dialogue history dht=
[x1, y1,· · ·, xt−1, yt−1] and the history of selected
knowledge kht = [k′1,· · ·, k′t−1] as they help the
knowledge selection (Kim et al., 2020a). Formally,
we use two GRUs (Cho et al., 2014) to summarize
the dialogue and knowledge selection history as the
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Figure 1: The framework of knowledge selection for dialogue generation. (a) In the supervised setting. (b) In the
unsupervised setting. Specifically, we replace the gold knowledge loss with our Distilled Distant Supervision Loss
(DDSL) which contains Distant Supervision (DS) and knowledge distillation (see the dotted red lines).

corresponding state vectors sdht and skht :

sdht = GRUdh

(
[hxt ;hyt ] , sdht−1

)
∈ Rd

skht = GRUkh

(
hk′t , skht−1

)
∈ Rd

, (2)

where sdh0 and skh0 are zero vectors, hxt , hyt and
hk′t are sentence vectors of utterance xt, response
yt and the oracle knowledge k′t (will be described in
Equation 8) and [·; ·] denotes concatenation. Then,
the selection query qt is obtained:

qt = Wq

[
skht−1 ; sdht−1 ;hxt

]
∈ Rd. (3)

Knowledge Selection: The knowledge selection
distribution S ∈ RL over the knowledge poolKt ∈
RL is obtained by the dot-product attention:

Skit =
exp

(
hkit · qt

)
∑

kjt∈Kt
exp

(
h
kjt
· qt
) . (4)

Finally, the knowledge ks
t with the highest attention

score is selected for further response generation. If
the gold knowledge kt exists, we could train this
task via the Cross Entropy (CE) loss:

LKS = LCE (S, kt) = − logSkt , (5)

2.5 Decoder
Following (Dinan et al., 2019; Kim et al., 2020a),
our Transformer-based decoder takes the represen-
tation concatenation Hrc =

[
Hxt ;Hkst

]
∈ RNrc,d

of current utterance xt and the selected knowledge
ks
t as input, and uses the copy mechanism (Gu et al.,

2016) to generate responses. The process of gener-
ating a word can be formulated as follows:

snt = TD
(
Hrc, y

<n
t

)
∈ Rd

pv = softmax (Wos
n
t ) ∈ R|V|

pcp, s̃
n
t = MultiHeadcp (s

n
t ,Hrc,Hrc)

pgen = sigmoid
(
Wgens̃

n
t

)
∈ R1

p (V) = pgen ·pv+
(
1−pgen

)
·pcp ∈ R|V|

, (6)

where TD denotes the Transformer decoder, snt is
the hidden vector for the n-th word in the response
yt at t-th turn, pcp is the attention weight of the
first head in the additional multi-head self-attention
layer for the copy mechanism, which is short for
MultiHeadcp (Vaswani et al., 2017), V is the vocab-
ulary, and p (V) is the final generation distribution.
Finally, we generate the word ynt with the high-
est probability, and we keep generating by feeding
ynt to the decoder until the “〈eos〉” token is gen-
erated. We train the generation task the Negative
Log-Likelihood (NLL) loss:

LG = LNLL = − log p (yt|xt, ks
t) (7)

The model is trained with the loss L = LKS + LG,
where LKS is the knowledge selection loss, i.e.,
Equation 5 in the supervised setting.

2.6 Distilled Distant Supervision Loss
In this section, we will introduce our Distilled Dis-
tant Supervision Loss (DDSL) to train knowledge
selection well in the unsupervised setting, which
consists of distant supervision, label weighting and
knowledge distillation. Actually, we first obtain a
noisy oracle knowledge label via distant supervi-
sion. And then our DDSL tries to reduce the noise
via label weighting and knowledge distillation.

Distant Supervision: Suppose that we have the
utterance xt, response yt and the retrieved knowl-
edge pool Kt without knowing the gold knowledge
label, we first calculate the confidence scoreWkit

whether each knowledge kit is matched up with this
dialogue flow by:

F1 (a, b) =
2 · | set(a) ∩ set(b)|
| set(a)|+ | set(b)|+ ε

Wkit
= softmaxτ

(
F1
(
kit, yt

)) , (8)

where set(a) or set(b) indicates the tokens in the
string a or b, softmaxτ (zi) = e(zi/τ)/

∑
j e

(zj/τ)
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and τ is the temperature to reshape the confidence
probability distributionW ∈ RL over the knowl-
edge pool. Then, we obtain the oracle knowledge
k′t with the highest confidence score, assuming that
the gold knowledge should contribute most tokens
to the response generation. This is possible be-
cause that 1) the causal modeling specified con-
ditions (Selltiz et al., 1976) hold between knowl-
edge selection and response generation (Tuan et al.,
2020), and 2) it is common for humans to (invol-
untarily) produce utterances which are copied or
suitably modified from background knowledge sen-
tences (Moghe et al., 2018).

Although we can directly replace the gold label
kt in Equation 5 with the alternative one k′t, there
are some noise. Therefore, we modify Equation 5
with label weighting via the confidence score:

LKS = LWCE (S) = LCE
(
S, k′t

)
· Wk′t

. (9)

Knowledge Distillation: We further alleviate
the noisy labeling problem of distance supervision
via Knowledge Distillation (KD) as shown in Fig-
ure 1 (b). Following (Tian et al., 2020; Chen et al.,
2020b), the teacher takes the context and response
as input and generates the distribution of knowl-
edge selection as soft target. Compared with the
student, i.e., the standard knowledge selection mod-
ule described in Section 2.4, teacher has the gold
response as an additional input.

Specifically, we make up the teacher query as
qtea
t = Wtea

[
sdht ; skht−1

]
∈ Rd, which contains

more information (i.e., the response) than qt in
Equation 3. Then we use this query qtea

t to ob-
tain the teacher’s knowledge selection distribution
T ∈RL by Equation 4. Finally, online response-
base knowledge distillation3 is formulated as:

LKD =LWCE(T ) +DKL(T ‖S)

=LCE
(
T , k′t

)
·Wk′t

+
∑
kit∈Kt

Tkit log
Tkit
Skit

, (10)

where the first term is used for teacher training
and the second term transfers the knowledge from
teacher to student based on the Kullback-Leibler
(KL) divergence between the teacher and student
distributions (i.e., T ∈RL and S∈RL ).

Although the teacher is also trained with the
noisy label, the teacher produces an independent

3As surveyed in (Gou et al., 2020), response-based knowl-
edge usually refers to the neural response of the last output
layer of the teacher model, and online distillation means we
train the teacher and student together.

Figure 2: To deal with the mismatch problem, we first
pretrain the Knowledge Selection (KS) and the decoder
with the matched knowledge4 in parallel along red lines.
Then we finetune the decoder with the selected knowl-
edge weightedly along the green line.

source of variance that can be used to cancel out
the variance introduced by the label noise (Li et al.,
2017). Moreover, previous works have proved
that the student can still be enhanced by the noisy
teacher (Sau and Balasubramanian, 2016; Xie et al.,
2020; Yuan et al., 2020). Therefore, we believe that
the student trained by two supervision signals gets
benefits from the regularization of the soft target
(Yuan et al., 2020).

To sum up, our DDSL loss is as follows:

LKS=LDDSL=LWCE(S)+ LKD, (11)

which consists of distant supervision, label weight-
ing in Equation 9 and knowledge distillation in
Equation 10 for unsupervised knowledge selection.

2.7 Training
The Mismatch Knowledge Selection Problem:
As we know, there are chances that the selected
knowledge is not the gold one due to 1) the diversity
of knowledge selection in conversation (Kim et al.,
2020a) and 2) the under-optimized knowledge se-
lection at early training stage (Zhao et al., 2020b).
And it is more serious in the unsupervised setting
where it is hard to train knowledge selection well.
The mismatch knowledge selection problem occurs
due to the training paradigm in Figure 1 where the
decoder is trained to generate the gold response
with mismatched knowledge. This mismatch prob-
lem causes the knowledge-aware decoder to take
the selected knowledge as noise and degenerate
into the knowledge-independent decoder.

Our Pretraining-Finetuning Strategy: Al-
though training the decoder with the matched
knowledge4 solves the mismatch problem. It can’t
deal with wrong knowledge selection at inference
which is often the case, yet never seen at training.

4Note that the oracle knowledge is most literally matched
with the gold response by the metric defined in Equation 8.
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We take the plain idea as our pretraining stage,
and then train the decoder to adapt to the selected
knowledge using different weighting scores in the
finetuning stage .

In the pretraining stage, we train knowledge
selection and response generation in parallel as
Figure 2 shows. The pretraining loss is as follows:

L′NLL = − log p
(
yt|xt, k′t

)
L = LKS + L′NLL

, (12)

where we use LKS = LDDSL in the unsupervised
setting and the decoder is trained to generate the
gold response with the oracle knowledge k′t instead
of the selected one kst . Therefore, the decoder
learns how to incorporate the matched knowledge4

k′t into the response generation because k′t is much
more accurate than the selected one kst as Table 4
shows. And we could alleviate the mismatch prob-
lem from the pretraining process because 1) we get
a fully optimized knowledge selection module and
2) the pretrained decoder provides a good initial-
ization for finetuning.

In the finetuning stage, we continuely train the
pretrained decoder to adapt to the pretrained knowl-
edge selection module with the sample weighting
idea. And the finetuning loss is defined as follows:

LG = LNLL ·
(
1 +Wkst

)
, (13)

where LNLL is defined in Equation 7 and Wkst
is

the confidence or weighting score of the selected
knowledge kst defined in Equation 8. As mentioned
above, the mismatch knowledge selection problem
is caused by the training paradigm that we may
train the decoder to generate the gold response with
the mismatched knowledge from the knowledge se-
lection module. Here, we finetune the pretrained
decoder with the selected knowledge kst by giving
higher importance weights if the selected knowl-
edge is suitable for the gold response generation.
In this way, we further alleviate the mismatch prob-
lem because we highlight the matched samples by
assigning an importance weight to each instance
(xt, k

s
t , yt) to reform the training data (Cai et al.,

2020; Dong et al., 2020).

3 Experiments

3.1 Dataset
We evaluate our model on two public knowledge-
grounded dialogue datasets: Wizard of Wikipedia
(WoW) (Dinan et al., 2019) and Holl-E (Moghe

et al., 2018), both of which provide the knowledge
candidates with gold knowledge labels for knowl-
edge selection. To test our approach in the unsu-
pervised setting, we do not use the gold knowledge
label provided in those datasets.
WoW contains the dialogues between two partici-
pants on some open-domain topics, where one is
a curious learner while the other plays the role of
a knowledgeable expert with access to the knowl-
edge pool. Each knowledge pool contains about 61
sentences on average per turn, which are retrieved
from Wikipedia based on the dialogue context via
the IR system. There are 18430, 1948 and 1933
dialogues for training, validation and test, respec-
tively. According to the topic overlapping, the test
set is split into two subsets: 965 Test Seen and 968
Test Unseen dialogues, where Test Unseen consists
of 58 topics never seen in train or validation.
Holl-E contains 7228, 930 and 913 dialogues for
training, validation and test, respectively. Two test
versions are provided: one with a single gold refer-
ence, the other with multiple gold references (more
than one gold knowledge sentences and correspond-
ing responses for each given conversation context).
Each dialogue is assigned with a document of about
60 sentences on average as the knowledge pool.
Here, we use the modified version (Kim et al.,
2020a) which fits for knowledge selection.

3.2 Models for Comparison

We compare our method with a set of baselines:5

3.2.1 No Knowledge

S2STransformer is a Seq2Seq model based on Trans-
former (Vaswani et al., 2017) that does not leverage
the external knowledge.
S2SBERT replaces the Transformer Encoder with a
pretrained BERT (Devlin et al., 2019).

3.2.2 Supervised Knowledge Selection

TMN is short for End-to-End Transformer Mem-
Net (Dinan et al., 2019), which selects knowledge
based on the Transformer memory network and
generate responses via the Transformer decoder.
TMNBERT+PostKS+CP, implemented by (Kim et al.,
2020a), enhances the encoder with BERT, knowl-
edge selection module with PostKS (Lian et al.,
2019) and decoder with the copy mechanism (CP).

5See Appendix A.1 for more baselines, from knowledge-
aware generation (Huang et al., 2020) to knowledge selection
in the supervised, semi-supervised and unsupervised settings.
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Setting Row Method
Test Seen Test Unseen

Acc ↑ PPL ↓ R-1 ↑ R-2 ↑ Acc ↑ PPL ↓ R-1 ↑ R-2 ↑

0 No Knowledge
0 0 S2S†Transformer (Vaswani et al., 2017) N/A 57.4 16.5 4.4 N/A 102.0 14.6 2.9
0 1 S2S†BERT N/A 53.9 17.2 4.8 N/A 93.3 14.9 3.3

1 Supervised
1 0 TMN (Dinan et al., 2019) 21.1 63.5 16.9 N/A 14.3 97.3 14.4 N/A
1 1 TMNBERT+PostKS+CP (2020a) 25.5 52.2 19.0 6.5 14.4 83.4 15.6 3.9
1 2 SKT (Kim et al., 2020a) 26.8 52.0 19.3 6.8 18.3 81.4 16.1 4.2

2 Unsupervised

2 0 TMN0 (Dinan et al., 2019) 13.4 66.5 15.9 N/A 11.8 103.6 14.3 N/A
2 1 PostKS (Lian et al., 2019) 4.8 79.1 13.0 1.0 4.2 193.8 13.1 1.0
2 2 SKT0 (Kim et al., 2020a) 0.3 54.7 17.1 4.6 0.1 88.2 15.5 3.4

0 UKSDG w/o DDSL 5.2 49.3 17.4 5.1 5.1 82.8 15.1 3.3
1 UKSDGvec w/o DDSL 13.5 46.1 17.8 5.2 13.1 82.3 15.5 3.3
2 UKSDG (ours) 23.8 51.8 19.5 6.8 16.2 76.3 16.3 4.4
3 UKSDGPF w/o SW (ours) 26.4 44.1 20.3 7.4 20.8 64.5 17.8 5.6
4 UKSDGPF (ours) 26.4 45.0 20.6 7.7 20.8 65.5 18.2 5.9

Table 1: Quantitative results on WoW. Our approach manages to select knowledge more accurately in the unsuper-
vised setting and generate more informative responses than the strong baselines in the supervised setting. Note that
models with “†” are implemented by ourselves and other models with citation are from the original paper.

SKT (Kim et al., 2020a), short for Sequential
Knowledge Transformer, uses the posterior distri-
bution by sequential latent modeling and achieves
promising results in the supervised setting.

3.2.3 Unsupervised Knowledge Selection
TMN0 is TMN, trained only via generation loss in
Equation 7 without knowledge loss in Equation 5.
SKT0 is SKT optimized without knowledge loss.
PostKS (Lian et al., 2019) takes the benefits of
latent variable models and leverages the posterior
knowledge distribution as a pseudo label for knowl-
edge selection without knowledge loss. Here, we
use the results provided by (Kim et al., 2020a).

3.2.4 Our Unsupervised Methods
We implement our model in the unsupervised set-
ting, namely Unsupervised Knowledge Selection
for Dialogue Generation (UKSDG), which is opti-
mized with our DDSL in Equation 11 for unsuper-
vised knowledge selection and generation loss in
Equation 7. UKSDGPF indicates that we adopt our
Pretraining-Finetuning strategy to alleviate the mis-
match knowledge selection problem in Section 2.7.
Furthermore, we remove several components for
ablation study:
(1) UKSDG w/o DDSL is only optimized by the
generation loss in Equation 7 without our DDSL.
(2) UKSDGvec w/o DDSL further replaces the de-
coder input Hrc (in Section 2.5) with the aver-
aged knowledge vector enhanced context Hvec=
Hxt+

∑
kit∈Kt

Skit ·hkit .
(3) UKSDGPF w/o SW does not use the Sample
Weighting in Equation 13.

3.3 Implementation Details

We use TensorFlow 2.0 to implement our approach
base on SKT6. All sentences are encoded by the
shared BERTBASE (Devlin et al., 2019), and the
response is greedily generated via a 5-layer Trans-
former decoder with copy mechanism. The hidden
size d is 768 and the vocabulary size |V | is 30, 522.
The knowledge selection module contains two sep-
arate one-layer GRUs and one projection layer. Our
proposed DDSL contains no trainable parameters
except one projection layer in the teacher selection
module. And the temperature τ is 0.1.

We use the Adam optimizer (Kingma and Ba,
2014) with gradient clipping at 0.4 to train our
models on a single GPU (TITAN Xp). The learning
rate is 2e−5 and the batch7 size is 1. Moreover,
we apply label smoothing (Pereyra et al., 2017)
and set 0.1 for knowledge selection and 0.05 for
response generation. In the pretraining-finetuning
strategy, we use 5 and 20 epochs in the pretraining
and finetuning stage, respectively. The pretrained
models are selected according to the accuracy score
and other models are selected according to the R-1
score since knowledge selection aims to serve for
high-quality generation.

It takes almost the same time for the conver-
gence of UKSDG and KSDG as we only replace
our DDSL with the gold knowledge selection loss.
The convergence of SKT is a bit slower as it is hard

6Thanks for their processed datasets, models and
evaluation codes at https://github.com/bckim92/
sequential-knowledge-transformer.

7Each example is a dialogue rather than an individual turn.

https://github.com/bckim92/sequential-knowledge-transformer
https://github.com/bckim92/sequential-knowledge-transformer
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Setting Row Method
Single Reference Multi Reference

Acc ↑ PPL ↓ R-1 ↑ R-2 ↑ Acc ↑ PPL ↓ R-1 ↑ R-2 ↑

0 No Knowledge
0 0 S2S†Transformer (Vaswani et al., 2017) N/A 105.8 19.1 9.8 N/A 72.4 24.1 12.9
0 1 S2S†BERT N/A 89.4 19.0 9.6 N/A 61.9 23.5 12.1

1 Supervised
1 0 TMN (Dinan et al., 2019) 22.7 140.6 20.1 10.3 32.3 83.6 24.3 12.8
1 1 TMNBERT+PostKS+CP(2020a) 27.8 47.4 29.2 22.3 37.8 27.9 35.9 29.0
1 2 SKT (Kim et al., 2020a) 29.2 48.9 29.8 23.1 39.2 28.5 36.5 29.7

2 Unsupervised

2 1 PostKS (Lian et al., 2019) 1.5 196.6 15.2 6.0 3.2 114.1 19.2 7.9
2 2 SKT0

‡ (Kim et al., 2020a) 0.1 77.1 19.2 9.9 0.1 75.8 19.4 10.1

0 UKSDG w/o DDSL 2.9 76.5 20.0 10.5 4.3 52.0 25.0 13.6
1 UKSDGvec w/o DDSL 19.1 78.1 20.9 10.9 28.8 53.2 25.4 13.3
2 UKSDG (ours) 24.2 55.4 29.7 23.1 33.5 31.9 36.4 29.7
3 UKSDGPF w/o SW (ours) 25.1 38.7 30.8 23.2 35.0 22.7 37.9 30.0
4 UKSDGPF (ours) 25.1 39.4 31.0 24.0 35.0 22.9 38.1 31.1

Table 2: Quantitative results on Holl-E. The method with “‡” is reported by rerunning the released code, and
models with “†” are implemented by ourselves.

to optimize the latent variable model. It takes about
2.5 times as long for the convergence of UKSDGPF
and KSDGPF. The computation for confidence cal-
culation during inference is the same for UKSDG,
KSDG (w/ and w/o PF) and SKT because we adopt
the same backbone. All of our models contain
about 174M parameters.

3.4 Evaluation

Automatic Evaluation. We automatically evalu-
ate knowledge selection with accuracy (Acc), re-
sponse generation with perplexity (PPL), unigram
F1 (R-1) and bigram F1 (R-2), which are com-
monly used in this task (Dinan et al., 2019; Kim
et al., 2020a; Chen et al., 2020b). We also remove
all the punctuation and (a, an, the) to compute the
R-1 and R-2 scores as (Kim et al., 2020a) do. Note
that lower PPL and higher R-1 and R-2 scores indi-
cate better generation quality.

Human Evaluation. We firstly select 100 sam-
ples from each test set on WoW for human eval-
uation. Then we follow (Kim et al., 2020a; Li
et al., 2019a) and ask three annotators to evaluate
the generation quality according to Engagingness
and Knowledgeability from 1 to 4, where 1 means
not at all, 2 is a little, 3 is somewhat, and 4 is a
lot. Engagingness measures how much do you like
the response and Knowledgeability measures the
informativeness in the responses.

4 Results and Analysis

4.1 Main Results

Quantitative Results. We report the automatic
results on WoW and Holl-E in Table 1 and Table 2,

respectively. And we have the following consistent
observations:8 (1) Comparing SKT and SKT0, we
see that the gold knowledge loss plays an important
role to train knowledge selection well. (2) Compar-
ing row 0 and 2, we see that our proposed DDSL is
the key to train knowledge selection well in the un-
supervised setting and can be the alternative of the
gold knowledge loss. As a result, our approach sig-
nificantly outperforms the other unsupervised meth-
ods on all metrics (significance tests (Koehn, 2004),
p-value < 0.01). (3) Although UKSDGvec w/o
DDSL could learn some patterns of knowledge se-
lection from the gradient of generation loss, we see
that compressing the knowledge into a vector will
loss much information for dialogue generation. (4)
Although our UKSDGPF usually makes knowledge
selection worse than the supervised SKT in row
1 2, we achieve higher generation quality, which
indicates that our pretraining-finetuning strategy
could alleviate the mismatch knowledge selection
problem and emphasizes the importance of lever-
aging the selected knowledge properly for future
study on this task. (5) Comparing row 3 and 4, we
see that the sample weighting also helps in the fine-
tuning stage, though PPL score is slightly worse
due to the difficulty of injecting the knowledge
into responses. (6) Moreover, our approach demon-
strates the stronger ability of generalization with
smaller performance gap between Test Seen and
Test Unseen in Table 1, which we attribute to our
DDSL because it works in the unsupervised setting
and is more suitable for Test Unseen. For example,
compared with SKT in row 1 2, UKSDGPF in row

8More observations with other baselines can be found in
Appendix A.2.
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Method
Test Seen Test Unseen

EGG KLD EGG KLD

SKT 2.70±0.05 2.64±0.05 2.46±0.05 2.50±0.06
UKSDG (ours) 2.49±0.05 2.37±0.06 2.33±0.06 2.27±0.05
UKSDGPF (ours) 2.72±0.05 2.71±0.05 2.49±0.06 2.60±0.05
Gold Response 3.25±0.04 3.37±0.05 3.16±0.05 3.24±0.05

Table 3: Results of human evaluations on WoW. EGG
and KLD denote Engagingness and Knowledgeability,
respectively.

4 achieves the highest selection accuracy in Test
Unseen with a slightly lower accuracy in Test Seen.

Qualitative Results. We report human evalua-
tion results of the generated responses according
to Engagingness and Knowledgeability in Table 3.
Comparing UKSDG and UKSDGPF, we see the
effectiveness of our pretraining-finetuning strategy
which could alleviate the mismatch problem de-
scribed in Section 2.7. Our UKSDGPF in the unsu-
pervised setting generates responses slightly better
than SKT in the supervised setting. Moreover, the
improvement is much obvious according to Knowl-
edgeability, which also indicates the importance of
using the selected knowledge properly.

4.2 Ablation Study
We have introduced the components of our DDSL
in Section 2.6 and shown its effectiveness in Sec-
tion 4.1. Here, we analyse our DDSL via an abla-
tion study in Table 4. Actually, we train UKSDGPF
on knowledge selection task, using our DDSL with
components removed. We have the following obser-
vations: (1) We see that most of the oracle knowl-
edge from distant supervision is the same as the
gold knowledge label by human. Therefore, it is ac-
ceptable to directly use this oracle knowledge label
to substitute the gold label as the supervision signal
(see the last row of Table 4). (2) However, distant
supervision inevitably suffers from the noisy label-
ing problem due to literally matching. For example,
there are about 30% oracle knowledges different
from the gold ones on WoW where the responses
convey knowledge much more flexibly. (3) Loss
weighting in Equation 9 helps on WoW where the
noisy labeling problem is serious. (4) Knowledge
distillation in Equation 10 could further alleviate
the label noise, and our method manages to select
knowledge accurately in the unsupervised setting.

4.3 Case Study
Table 5 presents several examples of generated re-
sponses on WoW and we have the following ob-

Method
WoW Holl E

Seen Unseen Single Multi

Gold label (kt) 100.0 100.0 100.0 100.0
Oracle Label (k′t) 70.1 69.0 90.3 90.4

LDDSL in Eq. 11 26.4 20.8 25.1 35.0
w/o LKD in Eq. 10 25.8 19.1 24.1 33.5
w/o LKD &Wk′t

in Eq. 9 25.5 18.8 24.0 34.2

Table 4: Ablation study. Knowledge selection accuracy
of UKSDGPF trained with different losses.

servations: (1) The oracle knowledge from dis-
tant supervision contains several informative to-
kens which could help dialogue generation since
they appears in the gold response as defined by
Equation 8. In particular, the oracle knowledge
in the case 3 is also appropriate and the gold re-
sponse contains much more information than the
gold knowledge, which indicates the diversity of
knowledge selection and selecting one sentence
may be not enough for informative generation. (2)
However, some oracle knowledge labels are differ-
ent from the gold ones (i.e., the selected one by
human). Our model still learns to select knowl-
edge as human, which we attribute to our DDSL
since knowledge distillation alleviates the noisy
labeling problem of distant supervision. (3) SKT
does not leverage the selected knowledge well and
generates the dull response. For example, SKT re-
peats the context in case 1, generates the verbose
and contradictory response in case 2 and does not
provide new information in case 3. (4) Whereas,
our UKSDGPF firstly selects the appropriate knowl-
edge as human does, and then generate fluent and
informative responses by alleviate the mismatch
knowledge selection problem with the help of the
pretraining-finetuning strategy. This indicates the
importance of leveraging the selected knowledge
properly for future study.

5 Related Work

External knowledge has been wildly explored to
enhance dialogue understanding and/or improve
dialogue generation (Zhu et al., 2017; Liu et al.,
2018; Chen et al., 2019; Wu et al., 2019; Chen
et al., 2020a; Tuan et al., 2020; Sun et al., 2020;
Zhang et al., 2020; Yu et al., 2020; Ni et al., 2021).
To make use of knowledge, knowledge access is
very important. Therefore, knowledge selection
which selecting appropriate knowledge given the
dialog context gains much attention (Zhang et al.,
2019; Meng et al., 2019; Ren et al., 2019; Dinan
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Case 1

Context Are you a fan of elvis presley?

Human
KS Regarded as one of the most significant cultural icons of the 20th century, he is often referred to as the “king of rock and ...”

DG You mean the king of rock and roll. Actually yes I am. best of all time. Don’t you agree?

SKT
KS Elvis Aaron Presley (January 8, 1935 - August 16, 1977) was an American singer, musician, and actor.

RG Yes, I love Elvis Presley!

UKSDGPF

OK Thornton’s recording of “hound dog” is listed as one of the rock and roll hall of fame’s

KS Regarded as one of the most significant cultural icons of the 20th century, he is often referred to as the “king of rock and ...”

DG Yes, I love him! He is regarded as the king of rock and roll.

Case 2

Context I love to go bowling with my family, but i’m a horrible bowler. Do you like it?

Human
KS Bowling is a sport or leisure activity in which a player rolls or throws a bowling ball towards a target.

DG Oh, yes, I love bowling. Rolling that ball down the lane and knocking down the pins gives me a charge.

SKT
KS It is one of the major forms of throwing sports.

RG I do! I love bowling! I like to play, but i’m not a fan of bowling.

UKSDGPF

OK In pin bowling variations, the target is usually to knock over pins at the end of a lane.

KS Bowling is a sport or leisure activity in which a player rolls or throws a bowling ball towards a target.

DG I love bowling! It is a sport or leisure activity in which a player rolls a bowling ball towards a target.

Case 3

Context Have you ever seen the Walking Dead?

Human
KS The Walking Dead is an American post-apocalyptic horror television series developed by Frank Darabont for AMC that ...

DG The American post-apocalyptic series? The one based on the comic book series by Robert Kirkman? Yes I love it! How about you?

SKT
KS The Walking Dead is an American post-apocalyptic horror television series developed by Frank Darabont for AMC that ...

RG Yes, I have seen the Walking Dead.

UKSDGPF

OK It is based on the comic book series “The Walking Dead” by Robert Kirkman, ...

KS The Walking Dead is an American post-apocalyptic horror television series developed by Frank Darabont for AMC that ...

DG Yes, I have seen the Walking Dead. It was developed by Frank Darabont for AMC.

Table 5: Examples of generated responses on WoW. KS, DG and OK denote Knowledge Selection, Dialogue
Generation and Oracle Knowledge, respectively.

et al., 2019; Kim et al., 2020a; Meng et al., 2020;
Chen et al., 2020b; Zheng et al., 2020; Huang et al.,
2020). In this paper, we focus on knowledge selec-
tion in the unsupervised setting where there is no
gold knowledge label. Lian et al. (2019) and Kim
et al. (2020a) attempt to deal with this problem via
latent models, yet their performance is less than
satisfactory. Differently, we design our DDSL to
make knowledge selection work well in the unsu-
pervised setting. There is a very recent work (Zhao
et al., 2020b) that finetunes GPT-2 (Radford et al.,
2019) with the unsupervised pretrained knowledge
selection module on unlabeled dialogues. We are
different in two aspects: (1) Our DDSL leverages
knowledge distillation to alleviate the label noise
at the pretraining stage; (2) We adopt the sample
weighting idea at the finetuning stage. And we will
leverage GPT-2 for future study.

Our work is inspired by Distant Supervision
(DS), an effective method to generate labeled data
with external knowledge base (KB) for informa-
tion extraction (Mintz et al., 2009; Min et al., 2013;
Zeng et al., 2015; Wang et al., 2018). Following
this idea, Gopalakrishnan et al. (2019) use the or-
acle knowledge from DS to construct the Topical-
Chat dataset. Similarly, Qin et al. (2019b) obtain
the weakly labeled data to train a KB retriever in

the task-oriented dialogue system. Ren et al. (2019)
propose a distantly supervised learning schema at
segment level to effectively learn the topic transi-
tion vector. Although inspired by the similar idea,
we are devoted to knowledge selection in the unsu-
pervised setting, which is a different application of
DS. Moreover, rather than just using distant super-
vision, we design our DDSL with label weighting
and knowledge distillation to deal with the noisy
labeling problem from DS.

6 Conclusion

We study unsupervised knowledge selection for di-
alogue generation where the gold knowledge label
is not available. Actually, we design the Distilled
Distant Supervision Loss, a novel and effective
solution to train knowledge selection well in the
unsupervised setting. Furthermore, we propose the
pretraining-finetuning strategy to deal with the mis-
match knowledge selection problem that models
tend to select the mismatched knowledge for dia-
logue generation in the unsupervised setting and
will cause the degeneration of knowledge-aware
decoder. Experiments show that our approach man-
ages to select knowledge more accurately in the un-
supervised setting and generates more informative
responses than many strong supervised baselines.
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A Additional Experiments

A.1 Models for Comparison
A.1.1 Our Unsupervised Methods
We implement our model in the unsupervised set-
ting, namely Unsupervised Knowledge Selection
for Dialogue Generation (UKSDG), which is opti-
mized with our DDSL in Equation 11 for unsuper-
vised knowledge selection and generation loss in
Equation 7. UKSDGPF indicates that we adopt our
Pretraining-Finetuning strategy to alleviate the mis-
match knowledge selection problem in Section 2.7.
Furthermore, we remove several components for
ablation study:
(1) UKSDG w/o DDSL does not use our DDSL.
(2) UKSDGvec w/o DDSL further replaces the de-
coder input Hrc (in Section 2.5) with the aver-
aged knowledge vector enhanced context Hvec=
Hxt+

∑
kit∈Kt

Skit ·hkit .
(3) UKSDGPF w/o SW does not use the Sample
Weighting in Equation 13.

A.1.2 Our Supervised Methods
Here, we also report the Knowledge Selection for
Dialogue Generation (KSDG) in the supervised
setting as described in Section 2.3, 2.4 and 2.5. And
KSDGPF alleviates the mismatch problem using
the pretrain-finetuning strategy in Section 2.7. We
use the gold knowledge loss in Equation 5 to train
KSDG and KSDGPF in the supervised setting while
we train UKSDG and UKSDGPF with our DDSL
when the gold knowledge is not available.

We compare our method with a set of baselines:

A.1.3 No Knowledge
S2STransformer is a Seq2Seq model based on Trans-
former (Vaswani et al., 2017) that does not leverage
the external knowledge.
S2SBERT replaces the Transformer Encoder with a
pre-trained BERT (Devlin et al., 2019).
KnowExpert (Xu et al., 2021) avoids the knowl-
edge retrieval process and attempts to inject prior
knowledge into the pre-trained language models
for knowledge-grounded dialogue generation task.
Essentially, KnowExpert stores knowledge in its
parameters with lightweight adapters. Therefore,
KnowExpert does not use knowledge explicitly at
inference.
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A.1.4 Supervised Knowledge Selection
TMN is short for End-to-End Transformer Mem-
Net (Dinan et al., 2019), which selects knowledge
based on the Transformer memory network and
generate responses via the Transformer decoder.
TMNBERT+PostKS+CP, implemented by (Kim et al.,
2020a), enhances the encoder with the pretrained
BERT, knowledge selection module with PostKS
(Lian et al., 2019) and decoder with the copy mech-
anism (CP).
SKT (Kim et al., 2020a), short for Sequential
Knowledge Transformer, uses the posterior distri-
bution by sequential latent modeling and achieves
promising results in the supervised setting.
SKT+PIPM+KDBTS (Chen et al., 2020b) equips
SKT with Posterior Information Prediction Module
(PIPM) and Knowledge Distillation Based Training
Strategy (KDBTS) to bridge the gap between prior
and posterior knowledge selection for knowledge-
grounded dialogue generation.

A.1.5 Unsupervised Knowledge Selection
TMN0 is TMN, trained only via generation loss in
Equation 7 without knowledge loss in Equation 5.
SKT0 is SKT optimized without knowledge loss.
PostKS (Lian et al., 2019) takes the benefits of
latent variable models and leverages the posterior
knowledge distribution as a pseudo label for knowl-
edge selection without knowledge loss. Here, we
use the results provided by (Kim et al., 2020a).

A.1.6 Knowledge-Aware Generation
Different from ours on the knowledge selection
setting, there are much work, named knowledge-
aware generation (Huang et al., 2020), which re-
gard the retrieved knowledge pool as the pseudo
pre-identified document for dialogue generation
with complex knowledge injection mechanism.
Nevertheless, we provide the results to get a com-
prehensive understanding where this field is going.
MTASK-RF (Ghazvininejad et al., 2018) is an
early model that realizes knowledge-grounded
conversation without crowd-sourced knowledge-
grounded dialogues. Here we use the results pro-
vided by (Li et al., 2020).
ITDD is short for Incremental Transformer with
Deliberation Decoder (Li et al., 2019b) where the
encoder incrementally represents multi-turn dia-
logues and knowledge, and the decoder conducts
response decoding in two passes.
DRD is short for Disentangle Response Decoder
(Zhao et al., 2020a), a model that exploits pre-

training techniques to tackle the low-resource chal-
lenge in knowledge-grounded dialogue generation.
We choose the one whose parameters are fine-tuned
on the full training data.
KIC (Lin et al., 2020) integrates recurrent
Knowledge-Interaction and knowledge Copy (KIC)
to generate informative responses.
ZRKGC (Li et al., 2020) is a very recent and un-
published work, which learns their model under
the zero-resource setting, where the dialogue cor-
pus and the knowledge corpus that are independent
with each other.

A.2 Quantitative Results
Table 6 shows the automatic results in various set-
tings on the Wizard of Wikipedia dataset, from
which we have the following observations9: (1) The
models with retrieved document generally achieves
much lower PPL, still the R-1 is worse than our
UKSDGPF. For the worse R-1 score, we think
the retrieved document contains the redundant and
irrelevant information which are harmful for di-
alogue generation (Zhao et al., 2020b). Mean-
while, we attribute the better PPL score to the
complex knowledge injection mechanism. For ex-
ample, ITDD leverages the deliberation decoder
(Xia et al., 2017) to improve context coherence and
knowledge correctness and DRD devises a disen-
tangled response decoder with pretrained language
model, context processor and knowledge proces-
sor. (2) Comparing KSDG with KSDGPF, again
we see the generation quality improvement via the
pretrain-finetuning strategy. Hence, our method is
general in both supervised and unsupervised set-
ting. (3) Comparing UKSDGvec w/o DDSL with
UKSDG w/o DDSL, we see that although select-
ing the knowledge vector softly allows the gradient
from dialogue generation to update knowledge se-
lection directly, compressing the knowledge into
a vector will loss much information for dialogue
generation. This observation, combined with ob-
servations (1) and (2), together indicates the impor-
tance of leveraging the selected knowledge well for
future study.

9The observations in the main paper will not be discussed
again here.
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Setting Method
Test Seen Test Unseen

Acc PPL R-1 R-2 Acc PPL R-1 R-2

No Knowledge
S2STransformer† (Vaswani et al., 2017) N/A 41.8 17.8 N/A N/A 87.0 14.0 N/A
S2SBERT† N/A 55.2 17.0 4.7 N/A 93.3 15.0 3.1
KnowExpert (Xu et al., 2021) N/A 15.3 18.8 N/A N/A 21.2 16.6 N/A

Retrieved Document

MTASK-RF (Ghazvininejad et al., 2018) N/A 65.4 13.1 N/A N/A 67.7 12.3 N/A
ITDD (Li et al., 2019b) N/A 17.8 16.2 N/A N/A 44.8 11.4 N/A
DRD (Zhao et al., 2020a) N/A 23.0 18.0 N/A N/A 25.6 16.5 N/A
KIC (Lin et al., 2020) N/A 51.9 18.4 N/A N/A 65.8 17.3 N/A
ZRKGC (Li et al., 2020) N/A 41.1 18.9 N/A N/A 42.7 18.8 N/A

Unsupervised KS

TMN0 (Dinan et al., 2019) 13.4 66.5 15.9 N/A 11.8 103.6 14.3 N/A
PostKS (Lian et al., 2019) 4.8 79.1 13.0 1.0 4.2 193.8 13.1 1.0
SKT0 (Kim et al., 2020a) 0.3 54.7 17.1 4.6 0.1 88.2 15.5 3.4

UKSDG w/o DDSL 5.2 49.3 17.4 5.1 5.1 82.8 15.1 3.3
UKSDGvec w/o DDSL 13.5 46.1 17.8 5.2 13.1 82.3 15.5 3.3
UKSDG (ours) 23.8 51.8 19.5 6.8 16.2 76.3 16.3 4.4
UKSDGPF w/o SW (ours) 26.4 44.1 20.3 7.4 20.8 64.5 17.8 5.6
UKSDGPF (ours) 26.4 45.0 20.6 7.7 20.8 65.5 18.2 5.9

Semi-supervised KS
SKT1/2 (Kim et al., 2020a) 25.1 49.0 19.2 6.6 16.7 77.8 16.1 4.1
SKT1/4 (Kim et al., 2020a) 22.4 45.7 18.7 6.1 13.8 78.0 15.8 3.6
SKT1/8 (Kim et al., 2020a) 21.0 45.3 18.6 6.0 12.3 79.9 15.7 3.6

Supervised KS

TMN (Dinan et al., 2019) 21.1 63.5 16.9 NA 14.3 97.3 14.4 NA
TMNE2E+BERT+PostKS+CP 25.5 52.2 19.0 6.5 14.4 83.4 15.6 3.9
SKT (Kim et al., 2020a) 26.8 52.0 19.3 6.8 18.3 81.4 16.1 4.2
SKT+PIPM+KDBTS (Chen et al., 2020b) 27.7 42.7 19.9 7.3 19.4 65.7 17.6 5.4
KSDG (our) 25.1 53.0 18.9 6.5 17.3 80.8 16.3 4.5
KSDGPF (our) 28.4 45.1 20.4 7.9 21.2 71.4 17.9 5.6

Table 6: Quantitative results on the Wizard of Wikipedia dataset. Note that models with “†” are implemented by
ourselves and other models with citation are from the original paper. KS denotes knowledge selection.


