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Abstract

Due to recent pretrained multilingual represen-
tation models, it has become feasible to exploit
labeled data from one language to train a cross-
lingual model that can then be applied to mul-
tiple new languages. In practice, however, we
still face the problem of scarce labeled data,
leading to subpar results. In this paper, we
propose a novel data augmentation strategy for
better cross-lingual natural language inference
by enriching the data to reflect more diversity
in a semantically faithful way. To this end, we
propose two methods of training a generative
model to induce synthesized examples, and
then leverage the resulting data using an ad-
versarial training regimen for more robustness.
In a series of detailed experiments, we show
that this fruitful combination leads to substan-
tial gains in cross-lingual inference.

1 Introduction

There is a growing need for NLP systems that
support low-resource languages, for which task-
specific training data may be lacking, while
domain-specific parallel corpora may be too scarce
to train a reliable machine translation engine. To
overcome this, zero-shot cross-lingual systems can
be trained on a source language LS and subse-
quently also be applied to other languages LT de-
spite a complete lack of labelled training data for
those target languages. In the past, such systems
typically drew on translation dictionaries, lexical
knowledge graphs, or parallel corpora, to build a
cross-lingual model that exploits simple connec-
tions between words and phrases across different
languages (de Melo and Siersdorfer, 2007; Fu et al.,
2020). Recently, pretrained language model archi-
tectures such as BERT (Devlin et al., 2019) have
been shown capable of learning joint multilingual
representations with self-supervised objectives un-
der a shared vocabulary, simply by combining the

input from multiple languages (Devlin et al., 2019;
Artetxe and Schwenk, 2019; Conneau and Lample,
2019; Conneau et al., 2019). Such representations
greatly facilitate cross-lingual applications. Still,
the success of such cross-lingual transfer hinges on
how close the involved languages are, with substan-
tial drops observed for some more distant language
pairs (Lauscher et al., 2020).

For our study, we focus on natural language infer-
ence (NLI), i.e., classifying whether a premise sen-
tence entails, contradicts, or is neutral with regard
to a hypothesis sentence (Williams et al., 2017).
This is a useful building block for applications in-
volving semantic understanding (Zhu et al., 2018;
Reimers and Gurevych, 2019). However, the task
is also very challenging, as it not only requires
accounting for very subtle differences in meaning
but also inferring presuppositions and implications
that are not explicitly stated. Due to these intricate
subtleties, zero-shot cross-lingual models are often
fairly brittle, while obtaining in-language training
data is fairly costly.

Data Augmentation. To boost the performance
of cross-lingual models, an intuitive thought is to
draw on unlabeled data from the target language
so as to enable the model to better account for the
specifics of that language, rather than just being
fine-tuned on the source language. A natural way
of exploiting unlabeled data is to consider standard
semi-supervised learning methods that leverage a
model’s own predictions on unlabeled target lan-
guage inputs (Dong and de Melo, 2019). How-
ever, this strategy fails when the predictions are
too noisy to serve as reliable training signals. In
this paper, we hence explore data augmentation
to circumvent this problem. The idea, widespread
in computer vision and speech recognition, is to
generate new training data from existing labeled
data. For images, a common approach is to apply
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transformations such as rotation and flipping, as
these typically preserve the original label assigned
to an image (Krizhevsky et al., 2012). For text,
in contrast, data augmentation is more challeng-
ing, and straightforward techniques include simple
operations on words within the original training
sequences, such as synonym replacement, random
insertion, random swapping, or random deletion
(Wei and Zou, 2019). In practice, however, there
are two notable problems. One is that the synthe-
sized data from data augmentation techniques may
as well be noisy and unreliable. Second, new ex-
amples may diverge from the distribution of the
original data.

On NLI, these problems are particularly pro-
nounced, as the very nature of this task is to account
for subtle differences between sentences. Modified
versions of the original sentences may no longer
have the same meaning and entailments. Hence,
existing data augmentation techniques often fail to
boost the result quality.

Overview and Contributions. In this paper, we
propose a novel data augmentation scheme to syn-
thesize controllable and much less noisy data for
cross-lingual NLI. This augmentation consists of
two parts. One serves to encourage language adap-
tation by means of reordering source language
words based on word alignments to better cope
with typological divergency between languages,
denoted as Reorder Augmentation (RA). Another
seeks to enrich the set of semantic relationships be-
tween a premise and pertinent hypotheses, denoted
as Semantic Augmentation (SA). Both are achieved
by learning corresponding sequence-to-sequence
(Seq2Seq) models.

The resulting samples along with their new la-
bels serve as an enriched training set for the final
cross-lingual training. During this phase, we in-
voke a special adversarial training regimen that
enables the model to better learn from such au-
tomatically induced training samples and transfer
more information to the target languages while bet-
ter bridging the gap between typologically distinct
languages. Our empirical study demonstrates the
necessity of incorporating adversarial training into
training with synthetic samples and the superiority
of our new augmentation method on cross-lingual
Natural Language Inference (Conneau et al., 2018).
Remarkably, our cross-lingual approach even out-
performs in-language supervised learning.

2 Method

Our proposed method consists of two steps. The
first involves inducing training examples with two
data augmentation models. Next, a task-specific
classifier is trained on both the original and the
newly generated training instances, with adversar-
ial perturbation for improved robustness and gener-
alization.

2.1 Data Augmentation Model
2.1.1 Reorder Augmentation
Reorder augmentation is based on the intuition of
making a model more robust with respect to dif-
ferences in word order typology. If our training
examples consist entirely of instances from a lan-
guage LS with a fairly strict subject–verb–object
(SVO) word order such as English, the model will
be less well equipped to pay attention to subtle se-
mantic differences between sentences from a target
language LT obeying subject–object–verb (SOV)
order. To alleviate this problem, we can rely on
auxiliary data to diversify the training data. For
this, we obtain word alignments for unannotated
bilingual parallel sentence pairs coveringLS and an
auxiliary language LA that need not be the same as
LT. We then reorder all source sentences to match
the word order of LA based on the alignments, and
train a model to apply such reordering on the NLI
training instances.

Source 𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥( 𝑥) 𝑥* 𝑥"! 𝑥"" 𝑥"#

Word Alignment

Target 𝑦! 𝑦" 𝑦# 𝑦$ 𝑦% 𝑦& 𝑦' 𝑦( 𝑦) 𝑦* 𝑦"! 𝑦"" 𝑦"# 𝑦"$

Reordered 
Source 𝑥! 𝑥" 𝑥# 𝑥( 𝑥$ 𝑥% 𝑥) 𝑥* 𝑥"! 𝑥' 𝑥"#

Figure 1: Illustration of using a word-aligned parallel
corpus for reordering a source language text.

Formally, suppose we have obtained l unlabelled
parallel sentences in the source language LS and
in the auxiliary language LA, C = {(〈si, ai〉 |
i = 1, ..., l}, where 〈s, a〉 is a source–auxiliary
language sentence pair. Based on a word alignment
model, in our case FastAlign (Dyer et al., 2013),
which uses Expectation Maximization to compute
the lexical translation probabilities, we obtain a
word pair table for each sentence pair 〈s, t〉, de-
noted as A(s, a) = {(i1, j1), ..., (im, jm)}.

Following the word order of LA, we then re-
order the source sequence s by consulting the table
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A(s, t), yielding the new sentence pair 〈s, s̄〉. Next,
we consider a pretrained Seq2Seq model, denoted
as r(·; θ). The model is assumed to have been
pretrained with an encoder and a decoder in the
source language, and we fine-tune this generative
model by training on the new parallel corpus C̄ =
{(〈si, s̄i〉 | i = 1, ..., l}. This generative Seq2Seq
model can then reorder the sequences in the la-
beled training datasetD = {(xi, yi) | i = 1, ..., n},
where n is the number of labeled instances, each
xi consists of a sequence pair 〈s1, s2〉, and each
yi ∈ Y is the corresponding ground truth label
describing their relationship.

2.1.2 Semantic Augmentation
Our second augmentation strategy involves training
a controllable model that, given a sentence and a
label describing the desired relationship, seeks to
emit a second sentence that stands in said relation-
ship to the input sentence. Thus, given an existing
training sentence pair, we can consider different
variations of one sentence in the pair and invoke the
model to generate a suitable second sentence. How-
ever, such automatically induced samples from SA
are inordinately noisy, precluding their immediate
use as training data, so we exploit a large pretrained
Teacher model trained on available source language
samples to rectify the labels of these synthetic sam-
ples with appropriate strategies.

Generation. As we wish to be able to control the
label of a generated example, the requested label is
prepended to the input as a (textual) prefix before it
is fed into a Seq2Seq model. We adopt the ground-
truth label of each example as the respective prefix,
resulting in a new input sequence (yi : s1) coupled
with s2 as the desired output forming a training
pair for the generation model.

Given the resulting labeled training dataset DSA,
we can fine-tune a pretrained Seq2Seq model, de-
noted as g(·; θ). This generative Seq2Seq model
can then be invoked for semantic data augmen-
tation to generate new training instances. For
each (ȳ : s1) as a labeled input sequence, where
ȳ ∈ Y \ {yi}, we generate an s̃2 via the fine-tuned
Seq2Seq model, yielding a new training instance
(〈s1, s̃2〉, ȳ).

Label Rectification. The semantic augmentation
induces s̃2 automatically based on s1 and the re-
quested label ȳ. However, the obtained s̃2 may not
always genuinely have the desired relationship ȳ to
s1. Thus, we treat this data as inherently noisy and

propose a rectifying scheme based on a Teacher
model. We wish for this Teacher to be as accurate
as possible, so we start off with a large pretrained
language model specifically for the source lan-
guage LS, which we assume obtains a better perfor-
mance on LS than a pretrained multilingual model.
We train the Teacher network h(·; θ) in K epochs
using the set of original labeled data D. This
teacher model is then invoked to verify and poten-
tially rectify labels from the automatically induced
augmentation data Dã = {(x̃i, yi) | i = 1, ...,m}
obtained in the previous step (where m is the num-
ber of instances). We assume (ỹi, c) = h(x̃i; θ)
denotes the predicted label along with the confi-
dence score c ∈ [0, 1] emitted by the classifier, and
assume a confidence threshold T has been prede-
termined. There are several strategies to determine
the final labels.

• Teacher Strategy: We adopt Dr = {(x̃i, ỹi) |
(x̃i, yi) ∈ Dã, (ỹi, c) = h(x̃i), c > T}, i.e.,
when the confidence score is above T , we be-
lieve the Teacher model is sufficiently confident
to ensure a reliable label, while other instances
are discarded.

• TR Strategy: An alternative scheme is to in-
stead adopt Dr = {(x̃i,Φ(yi, ỹi, c)) | (x̃i, yi) ∈
Dã, (ỹi, c) = h(x̃i)}, where

Φ(yi, ỹi, c) =

{
ỹi c > T

yi otherwise

Here, labels remain unchanged when Teacher
predictions match the originally requested labels.
In case of an inconsistency, we adopt the Teacher
model’s label if it is sufficiently confident, and
otherwise retain the requested label.

2.2 Adversarial Training
Upon completing the two kinds of data augmenta-
tion, we possess synthesized data that is substan-
tially less noisy, denoted as Dr, which can be incor-
porated into the original training dataD to yield the
final augmented training set Da = D ∪ Dr. With
this, we proceed to train a new model f(·; θ) for
the final cross-lingual sentence pair classification.

As a special training regimen, we adopt adversar-
ial training, which seeks to minimize the maximal
loss incurred by label-preserving adversarial per-
turbations (Szegedy et al., 2014; Goodfellow et al.,
2015), thereby promising to make the model more
robust. Nonetheless, the gains observed from it
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in practice have been somewhat limited in both
monolingual and cross-lingual settings. We conjec-
ture that this is because it has previously merely
been invoked as an additional form of monolingual
regularization (Miyato et al., 2017).

In contrast, we hypothesize that adversarial train-
ing is particularly productive in a cross-lingual
framework when used to exploit augmented data, as
it encourages the model to be more robust towards
the divergence among similar words and word or-
ders in different languages and to better adapt to
the new modestly noisy data. This hypothesis is
later confirmed in our experimental results.

Adversarial training is based on the notion of
finding optimal parameters θ to make the model
robust against any perturbation r within a norm
ball on a continuous multilingual (sub-)word em-
bedding space. Hence, the loss function becomes:

Ladv(xi, yi) = L(f(xi + radv(xi, yi); θ), yi)
(1)

where radv(xi, yi) = argmax
r,||r||≤ε

L(f(xi + r; θ̃), yi)

Generally, a closed form for the optimal perturba-
tion radv(xi, yi) cannot be obtained for deep neu-
ral networks. Goodfellow et al. (2015) proposed
approximating this worst case perturbation by lin-
earizing f(xi; θ̃) around xi. With a linear approx-
imation and an L2 norm constraint in Equation 2,
the adversarial perturbation is

radv(xi, yi) ≈ ε
g(xi, yi)

||g(xi, yi)||2
(2)

where g(xi, yi) = ∇xi
L(f(xi; θ̃), yi).

However, neural networks are typically not linear
even over a relatively small region, so this approxi-
mation cannot guarantee to achieve the best optimal
point within the bound. Madry et al. (2017) demon-
strated that projected gradient descent (PGD) al-
lows us to find a better perturbation radv(xi, yi).
In particular, for the norm ball constraint ||r|| ≤ ε,
given a point r0, Π||r||≤ε aims to find a perturbation
r that is closest to r0 as follows:

Π||r||≤ε(r0) = argmin
||r||≤ε

||r− r0|| (3)

To find more optimal points, K-step PGD is
needed during training, which requires K forward–
backward passes through the network. With a lin-
ear approximation and an L2 norm constraint, PGD

takes the following step in each iteration:

rt+1 = Π||r||≤ε

(
rt + α

g(xi, yi, rt)

||g(xi, yi, rt)||2)

)
(4)

where g(xi, yi, rt) = ∇rtL(f(xi + rt; θ̃), yi)

Here, α is the step size and t is the step index.

3 Experiments and Analysis

3.1 Experimental Setup

Tasks and Datasets. For evaluation, we used
XNLI (Conneau et al., 2018), the most promi-
nent cross-lingual Natural Language Inference cor-
pus, which extends the MultiNLI dataset (Williams
et al., 2017) to 15 languages. In our experiments,
we considered 20k training data, i.e., ∼5% of the
original training size to study lower-resource set-
tings requiring augmentation. Following previous
work, we consider English as the source language
in our experiments.

Model Details. To show that our reorder aug-
mentation strategy does not require auxiliary data
from a low-resource target language, we only give
it access to parallel data for another closely re-
lated high-resource language. Specifically, we use
the English–German bilingual parallel corpus from
JW300 (Agić and Vulić, 2019). Like English, Ger-
man commonly adopts an SVO word order, but in
some instances also mandates SOV and is generally
less rigid than English. This allows us to demon-
strate the utility of reorder augmentation even in
the absence of data from a language similar to the
target language. We relied on FastAlign1 to induce
200k training pairs for Seq2Seq fine-tuning on re-
ordering.

As the pre-trained Seq2Seq model, we used
Google’s T5-base (Raffel et al., 2020), a unified
text-to-text Transformer, to generate new training
examples. During generation, we set the beam size
as 1 and use sampling instead of greedy decoding.
For the Teacher model in semantic augmentation,
we relied on RoBERTa-Large (Liu et al., 2019), a
robustly optimized BERT model, to fine-tune NLI
on English. As the multilingual model, we employ
XLM-RoBERTa-base (XLM-R) (Conneau et al.,
2019), trained on over 100 different languages. For
PGD, the step size α, norm constraint size ε, and
number of steps K are 1.0, 3.0, 3, respectively. All
hyperparameter tuning is conducted based on the

1https://github.com/clab/fast align
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Table 1: Hyper-parameters for pretrained models.

Parameter RoBERTa T5 XLM-R
max. sequence length 128 150 128
training batch size 16 8 32
learning rate 1e-5 3e-4 1e-5
max. grad. norm - 1.0 -

accuracy on the English validation set. The Teacher
strategy for XNLI then is used for the rectification
of semantically augmented texts, as inference re-
quires particularly clean data. The threshold T for
this is 0.8. An overview of the basic network pa-
rameter values is given in Table 1. We rely on early
stopping as a termination criterion. For all NLI
classification results, we randomly repeat each ex-
periment 5 times and report the averaged accuracy.

3.2 Main Results
Cross-lingual Inference Classification. Table 2
compares our approach against several strong base-
lines on XNLI. The first part considers in-language
supervised learning, where we relied on genuine
training data from the target language rather than
a cross-lingual setting. These results are merely
provided for comparison. The second part consid-
ers zero-shot cross-lingual transfer, i.e., the setting
we are targeting in this paper: We first used En-
glish training data to train the XLM-R model and
then applied it to non-English languages without
any training data in the target language. We also
trained the model with PGD adversarial training to
assess how well PGD works without any data aug-
mentation. Next, we evaluate XLM-R when trained
on original and augmented examples from several
augmentation methods, with and without adversar-
ial training, respectively. The first of these is Easy
Augmentation (EA) by Wei and Zou (2019), a state-
of-the-art method for data augmentation in NLP. It
mixes 4 strategies, namely synonym replacement,
random insertion, random swapping, and random
deletion, applying each of these to 20% of words in
a sentence. Additionally, we consider our proposed
RA and SA strategies, as well as combinations of
EA or RA with SA.

Compared with vanilla XLM-R without adver-
sarial training, XLM-R with PGD works better
across a range of non-English languages, which
shows the effectiveness of adversarial training for
more robustness in cross-lingual settings. We ob-
serve that XLM-R, when trained with EA or RA,
outperform the setting without augmentation for
English and some non-English languages, though

it does not achieve sufficiently stronger results in
terms of the average accuracy across different lan-
guages. This suggests that XLM-R struggles to
benefit from the augmented instances from RA for
better generalizability. In contrast, when trained
with SA, XLM-R performs better than without SA
examples for most languages, confirming that our
semantic augmentation is beneficial. Remarkably,
XLM-R with SA examples even succeeds at out-
performing in-language training with an average
absolute improvement of about 1.1% in accuracy,
suggesting that cross-lingual models trained with
automatically generated English examples can be
more informative with regard to inference than tar-
get language examples.2 Next, we also observe
that the accuracy of XLM-R with additional exam-
ples from EA, RA, SA is boosted with PGD. This
suggests that adversarial training is particularly use-
ful to boost generalizability and robustness when
operating on artificial augmented examples.

Beyond this, our full zero-shot approach further
outperforms all baselines across 14 languages, in-
cluding in-language training. This demonstrates
the value of improving generalizability and robust-
ness by adding diverse forms of augmentation in an
adversarial training framework that can cope with
noisy examples.

3.3 Ablation Studies and Analysis

Comparisons on Different Rectifying Strate-
gies. One key part of our method is the label
rectification mechanism. We compare different
rectification strategies in Table 3. The results show
that the Teacher and TR methods introduced in
Section 2.1.2 yield fairly similar results. This con-
firms the robustness of our approach with regard to
the choice of strategy. The same also holds for an
additional option, Agreement, which retains only
those examples on which the prediction from the
Teacher agrees with the originally requested label.
Finally, for comparison, we evaluated yet another
strategy, Requested, which always adopts the orig-
inally requested labels as chosen for generation.
We find that this strategy introduces overly many
unreliable labels, so the model is unable to work
well. This confirms that rectifying labels with a
Teacher model is a crucial ingredient.

Comparisons on Adversarial Perturbations.
For assessing the value of PGD for adversarial per-

2Note that the in-language training data in XNLI was cre-
ated using machine translation.
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Table 2: Accuracy (in %) on XNLI with augmented examples used for cross-lingual transfer. The number of
augmented examples from EA, RA and SA are 80k, 20k, 80k. EA (Wei and Zou, 2019) is Easy Data Augmentation.
The best cross-lingual transfer results under XLM-R are given in boldface.

Approach en de es zh fr ru ar sw ur bg el th tr vi hi avg

In-Language Supervised Learning (Translate–Train)
RoBERTa 88.2
mBERT 73.3 65.2 69.0 66.5 66.5 64.8 61.7 57.7 56.3 65.8 63.4 49.3 61.5 66.9 59.3 63.1
XLM-R 77.7 70.6 73.0 68.1 72.8 70.6 67.4 61.8 60.5 73.2 71.0 68.9 69.3 70.2 64.9 69.3

Zero-Shot Cross-Lingual Transfer
XLM-R 77.7 71.7 72.6 69.5 72.7 70.2 67.7 60.7 61.0 72.0 70.2 67.4 69.0 71..0 64.9 69.1
+PGD 78.9 71.8 74.5 70.2 73.5 71.1 67.3 60.7 62.0 72.9 71.3 68.7 69.2 71.3 64.9 69.9
+EA(80k) 77.8 70.3 73.1 69.2 72.9 70.3 67.5 61.6 63.5 72.1 70.1 68.1 68.7 69.5 65.1 69.3
+RA(20k) 78.4 71.0 73.1 67.3 73.0 70.2 67.1 61.5 61.1 71.9 70.3 65.5 67.5 69.5 64.7 68.8
+SA(80k) 79.5 72.0 74.4 69.6 74.1 71.9 67.5 63.6 62.7 73.6 71.9 69.0 69.2 71.0 66.1 70.4
+EA+PGD 77.9 71.9 74.4 71.1 73.5 71.5 68.8 63.3 64.4 74.1 68.3 69.5 68.9 70.4 66.9 70.3
+RA+PGD 78.9 72.5 74.7 71.1 74.5 72.0 68.6 63.1 63.6 73.3 72 69.0 69.9 71.7 65.9 70.7
+SA+PGD 80.4 73.4 75.7 71.8 74.0 73.1 69.3 64.5 63.7 74.5 73.2 70.3 70.2 72.3 66.9 71.5
+EA+SA+PGD 80.0 74.0 76.1 73.0 75.5 73.9 70.2 63.7 65.5 75.4 73.3 70.5 71.4 72.9 68.0 72.2
+RA+SA+PGD 80.8 74.5 77.3 73.6 75.8 74.9 70.0 64.8 65.7 76.3 74.9 71.6 71.4 74.5 68.5 73.0

Table 3: Accuracy (in %) on XLNI with different rectifying strategies, training on XLM-R with SA and PGD. T
is the threshold. p denotes the percentage of initial augmented examples retained for training.

Approach p en de es zh fr ru ar sw ur bg el th tr vi hi avg

Teacher (T = 0) 100% 79.7 72.8 75.6 71.7 73.9 73.0 69.3 64.5 63.8 74.0 72.6 69.8 70.0 71.8 66.5 71.3
Teacher (T = 0.8) 94% 80.4 73.4 75.7 71.8 74.0 73.1 69.3 64.5 63.7 74.5 73.2 70.3 70.2 72.3 66.9 71.6
TR (T = 0.8) 100% 79.1 72.9 75.3 71.4 74.1 73.1 68.8 64.1 63.6 73.9 73.1 70.4 70.4 72.0 66.6 71.3
Agreement 66% 78.7 71.3 74.5 70.8 72.7 71.7 68.7 63.8 62.6 73.0 72.0 69.7 69.4 71.1 65.9 70.4
Requested 100% 75.4 67.5 70.1 69.0 68.0 69.2 65.7 61.1 61.6 70.5 68.3 65.9 68.3 70.6 64.1 67.7

en de es zh fr ru ar sw ur bg el th tr vi hi
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Figure 2: Relative improvements of XLM-R with aug-
mentation and PGD over XLM-R. Blue refers to the im-
provement on 10k original instances plus 80k SA and
10k RA, while orange refers to the improvement on 20k
original instances plus 80k SA and 20k RA, and brown
designates the overlap between blue and orange.

turbation, Table 4 compares PGD with the standard
Fast Gradient Method (FGM) for adversarial per-
turbation (Goodfellow et al., 2015) as introduced in
Section 2.2. We ran experiments on XNLI with 10k
and 20k training data, each augmented with 80k
induced semantic examples. We observe that FGM
obtains a lower average accuracy than PGD with
the same amount of training data, confirming the
superiority of PGD in providing better adversarial
perturbations than FGM to improve both general-
ization and robustness.

Effectiveness on Different Training Sizes.
Data augmentation is an important approach to
deal with scarce labels. The results in Table
4 further show that when fine-tuning T5 using
10k XNLI training instances with 80k semantic
and 10k reorder augmented examples, we obtain
substantially better results than when using 20k
training instances without augmentation. We can
also observe the improvement of XLM-R with RA,
SA, and adversarial training over vanilla XLM-R
on each language as plotted in Figure 2. The
relative gains with 10k training data are larger than
with 20k training data across a range of languages,
which shows that our method is consistently most
beneficial when training data is scarce.

Influence of Amount of Augmentation. To as-
sess the role of the amount of data augmentation,
we conducted experiments on XNLI with 20k train-
ing examples, and evaluated the effect of adding
either 20k or 80k augmented examples from EA,
RA, SA. The results are given in Table 5. When
trained without PGD, one can often benefit from
using up to 80k augmented examples. Due to the
inherent reordering differences between English
and German, there are limits regarding the amount
of such data one ought to incorporate. We find that
20k instances from RA can suffice. We observe
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Table 4: Accuracy (in %) on XNLI experiments with different amounts of training and augmentation data, and
different adversarial training methods.

Approach en de es zh fr ru ar sw ur bg el th tr vi hi avg

XLM-R (10k) 74.5 68.0 70.3 65.5 70.8 68.0 64.2 61.1 60.2 69.9 68.9 65.0 66.9 68.4 61.5 66.9
+SA +FGM 77.5 70.9 73.6 68.3 73.1 70.7 67.3 62.2 62.2 72.8 70.5 68.4 67.3 70.2 64.9 69.3
+SA +PGD 78.2 71.4 73.7 70.8 73.1 71.2 68.1 62.3 63.2 73.6 71.8 68.9 69.2 71.1 65.6 70.1
+RA +SA +PGD 79.1 73.0 75.2 72.3 73.6 72.5 69.2 64.5 63.7 74.5 72.3 70.0 70.7 72.7 67.2 71.4
Improvement(%) 6.2 7.4 7.0 10.0 4.0 6.6 7.8 5.6 5.8 6.6 4.9 7.7 5.7 6.3 9.3 6.7
XLM-R (20k) 77.7 70.0 72.5 69.2 72.7 70.6 66.9 61.6 60.8 72.0 70.2 66.7 68.7 70.6 64.9 69.0
+SA +FGM 79.3 72.4 74.7 70.6 73.7 71.8 67.6 63.5 63.0 72.9 71.9 68.3 69.3 71.6 66.6 70.5
+SA +PGD 80.4 73.4 75.7 71.8 74.0 73.1 69.3 64.5 63.7 74.5 73.2 70.3 70.2 72.3 66.9 71.6
+RA +SA +PGD 80.8 74.5 77.3 73.6 75.8 74.9 70.0 64.8 65.7 76.3 74.9 71.6 71.4 74.5 68.5 73.0
Improvement(%) 4.0 6.4 6.6 6.4 4.3 6.1 4.6 5.2 8.1 6.0 6.7 7.3 3.9 5.5 5.5 5.8

Table 5: Accuracy (in %) on XNLI experiments trained using 20k vs. 80k augmentation data from EA, RA, SA,
with and without PGD.

Approach en de es zh fr ru ar sw ur bg el th tr vi hi avg

XLM-R (20k) 77.7 71.7 72.6 69.5 72.7 70.2 67.7 60.7 61.0 72.0 70.2 67.4 69.0 71..0 64.9 69.1
+EA (20k) 77.4 69.1 71.9 67.5 71.6 69.3 65.5 61.0 61.5 71.1 69.2 67.1 67.1 68.8 63.9 68.1
+EA (80k) 77.8 70.3 73.1 69.2 72.9 70.3 67.5 61.6 63.5 72.1 70.1 68.1 68.7 69.5 65.1 69.3
+RA (20k) 78.4 71.0 73.1 67.3 73.0 70.2 67.1 61.5 61.1 71.9 70.3 65.5 67.5 69.5 64.7 68.8
+RA (80k) 77.5 70.8 73.3 68.1 72.2 70.3 66.8 60.7 60.3 72.5 70.5 66.0 67.6 69.3 63.3 68.6
+SA (20k) 78.2 70.6 72.8 67.3 72.6 70.3 66.5 61.4 60.4 71.8 69.6 66.9 67.6 69.5 64.0 68.6
+SA (80k) 79.5 72.0 74.4 69.6 74.1 71.9 67.5 63.6 62.7 73.6 71.9 69.0 69.2 71.0 66.1 70.4
+PGD 78.9 71.8 74.5 70.2 73.5 71.1 67.3 60.7 62.0 72.9 71.3 68.7 69.2 71.3 64.9 69.9
+EA +PGD (20k) 77.6 70.9 73.9 69.8 73.0 71.1 67.1 62.4 63.8 73.0 71.3 68.9 69.1 71.2 65.8 69.9
+EA +PGD (80k) 77.9 71.9 74.4 71.1 73.5 71.5 68.8 63.3 64.4 74.1 68.3 69.5 68.9 70.4 66.9 70.3
+RA +PGD (20k) 78.9 72.5 74.7 71.1 74.5 72.0 68.6 63.1 63.6 73.3 72 69.0 69.9 71.7 65.9 70.7
+RA +PGD (80k) 78.4 71.9 74.9 71.0 73.7 71.9 68.7 62.6 64.0 73.4 72.1 68.9 69.9 71.9 66.4 70.4
+SA +PGD (20k) 79.3 73.3 74.0 69.4 73.3 71.0 67.6 62.7 62.4 73.7 71.7 68.3 69.28 71.1 65.6 70.2
+SA +PGD (80k) 80.4 73.4 75.7 71.8 74.0 73.1 69.3 64.5 63.7 74.5 73.2 70.3 70.2 72.3 66.9 71.5

that EA with PGD requires up to 80k augmented in-
stances, i.e., 3 times the size of the original training
data, to outperform XLM-R with PGD, whereas
only 20k augmented examples suffice for RA with
PGD to beat XLM-R with PGD.

Case Studies. To better illustrate the principles
of our data augmentation technique, we provide
several examples. Table 6 shows two examples of
the three data augmentation processes on XNLI.
For the first example, the original label is contra-
diction, so entailment and neutral serve as re-
quested labels to generate new training text. Next,
our Teacher model attempts to rectify these labels.
Although our generative model treats Vrenna and
I fought him in a fight, but he had just gotten us
as neutral to S1 (Vrenna and I both fought him
and he nearly took us), the Teacher model changes
the label to entailment. For the second example,
both the generative and Teacher model are unable
to conclude that The rice ripens in the summer is
contradictory with the premise. From the two EA
outputs, we can observe him is randomly deleted in
Example (1) and the and rice is swapped in Exam-
ple (2), which loses some information, whereas RA

Seq2Seq generated examples maintain all crucial
information despite the reordering.

4 Related Work

Data Augmentation. Data augmentation is a
promising technique, especially when dealing with
scarce data, imbalanced data, or semi-supervised
learning problems. Back-translation (Sennrich
et al., 2015) has been considered as a technique
to obtain alternative examples preserving the origi-
nal semantics, by translating an existing example
in language LA into another language LB and then
translating it back into LA to obtain an augmented
example. Yu et al. (2018) and Xie et al. (2020) ap-
plied it to question answering and semi-supervised
monolingual training scenarios. However, this re-
quires high-quality translation engines that often
do not exist in the settings in which one wishes to
apply cross-lingual systems.

Wei and Zou (2019) instead combined synonym
replacement, random insertion, random swapping,
and random deletion in a method named EDA.
Since insertion and deletion may affect the seman-
tics of the utterance, some studies opt to control
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Table 6: Examples of XNLI data augmentation. V: Version (O: Original). RL: Requested Label. L: Final (possibly
rectified) label.

V RL L Text

(1)

O – contradiction S1: Vrenna and I both fought him and he nearly took us.
S2: Neither Vrenna nor myself have ever fought him.

EA – contradiction S1: Vrenna and I both fought him and took nearly he us.
S2: Neither Vrenna nor myself have ever fought.

RA – contradiction S1: Vrenna and I both him fought and he us nearly took.
S2: Neither me nor Vrenna have him ever fought.

SA entailment entailment S2: It was the guy that nearly took the couple of us.
SA neutral entailment S2: Vrenna and I fought him in a fight, but he had just gotten us.

(2)

O – contradiction
S1: In summer the rice forms a green velvety blanket, then
turns golden in autumn when it ripens and is harvested.
S2: The rice is golden and harvestable in the summer, but turns green in autumn.

EA – contradiction
S1: Harvested summer the rice forms a green velvety blanket then
turns golden in autumn when is ripens and it in.
S2: The the is golden and harvestable in rice summer, but turns green in autumn.

RA – contradiction
S1: In summer forms the rice a green velvety blanket, turns
then in autumn golden when it ripens and harvested is.
S2: The rice is golden and harvestable in the summer, but turns in autumn green.

SA entailment entailment S2: The rice turns golden in autumn when it ripens.
SA neutral entailment S2: The rice ripens in the summer and then turns golden in the autumn.

the selection of words to be replaced with indi-
cators such as TF-IDF scores (Xie et al., 2020).
Fadaee et al. (2017) use contextualized word em-
beddings to replace the target word. Kobayashi
(2018) proposed a bi-directional language-model-
based augmentation method, and Wu et al. (2019)
further improved its results by switching to BERT.
Another major category is text generation based
augmentation. Anaby-Tavor et al. (2020) proposed
a language model based data augmentation method,
shown to improve classifier performance on a vari-
ety of English datasets. It relies on GPT-2 (Radford
et al., 2018) to generate a single new sequence in
each instance.

Our work, in contrast, presents a novel augmen-
tation scheme designed to cope with the special
challenges of sentence pair classification, where a
Seq2Seq Transformer enables augmentation based
on a paired input sentence. Our method also in-
troduces a Teacher model to rectify labels. Apart
from this, we expand the idea of language model
based augmentation to cross-lingual settings and
leverage noisy instances with adversarial training.

Adversarial Training. Many approaches for im-
proving the robustness of a machine learning sys-
tem against adversarial perturbations (Szegedy
et al., 2014) have been advanced. Goodfellow et al.
(2015) proposed a fast gradient method based on
linear perturbation of non-linear models. Later,
Madry et al. (2017) presented PGD-based adver-
sarial training through multiple projected gradient

ascent steps to adversarially maximize the loss. In
NLP, Belinkov and Bisk (2017) exploited structure-
invariant word manipulation and robust training
on noisy texts for improved robustness. Iyyer
et al. (2018) proposed syntactically controlled para-
phrase networks with back-translated data and used
them to generate adversarial examples. Adversar-
ial training also plays a role in improving a neu-
ral model’s generalization. For instance, Cheng
et al. (2019) used adversarial source examples to
improve a translation model. Dong et al. (2020)
exploit FGM-based adversarial training in self-
learning for improved cross-lingual text classifi-
cation. In our setting, we count on adversarial
training in the word embedding space and show
that PGD-based adversarial training remains effec-
tive when the adversarial perturbation is applied to
noisy augmented examples.

5 Conclusion

While multilingual pretrained model have enabled
better cross-lingual learning, we still often en-
counter data scarcity issues due to the high cost
of collecting data, which weakens the generaliza-
tion ability of the multilingual model.

To address this, this paper proposes a novel data
augmentation strategy with label rectification to
build synthetic examples, outperforming even mod-
els trained with larger amounts of ground-truth data.
We show that we can best learn from such noisy
instances with adversarial training, which enables
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the classifier to transfer more information from the
source language to other languages and to become
more robust. Remarkably, with this, our models
trained without any target language training data at
all are able to outperform models trained fully on
in-language training data. Moreover, the amount of
augmented data from our Seq2Seq-based reorder
augmentation used in training is much less than that
required by the state-of-the-art EDA method in or-
der to achieve comparable performance. Finally, in
our series of follow-up experiments comparing dif-
ferent training regimens and variants, one notable
finding is that our overall augmented approach can
even outperform non-augmented supervision with
twice as many ground truth labels. Overall, this
suggests our combination of data augmentation
with adversarial training as a valuable way of learn-
ing substantially more accurate and more robust
models without any target-language training data.

Broader Impact

Research on cross-lingual NLP is often motivated
by a desire to provide state-of-the-art advances to
linguistic communities that have been underserved.
Such advances may enable better access to informa-
tion as well as to products and services. However,
there is a risk that such technological advances may
not always be desired by the relevant communities
and may indeed also cause harm to them (Bird,
2020). Moreover, cross-lingual systems in partic-
ular may exhibit biases with regard to the source
language used for training and the general cultural
assumptions reflected in such data. In light of this,
special care needs to be taken to analyze potential
outcomes and risks before deploying cross-lingual
systems in real-world applications.
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