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Abstract

This paper describes our submission1 to subtask a and b of SemEval-2020 Task 4. For subtask a,
we use a ALBERT based model with improved input form to pick out the common sense statement
from two statement candidates. For subtask b, we use a multiple choice model enhanced by hint
sentence mechanism to select the reason from given options about why a statement is against
common sense. Besides, we propose a novel transfer learning strategy between subtasks which
help improve the performance. The accuracy scores of our system are 95.6 / 94.9 on official test
set2 and rank 7th / 2nd on Post-Evaluation leaderboard.

1 Introduction

Common sense verification and explanation is an important and challenging task in artificial intelligence
and natural language processing. This is a simple task for human beings, because human beings can make
full use of external knowledge accumulated in their daily lives. However, common sense verification
and reasoning is difficult for machines. According to Wang (2019), even some state-of-the-art language
models such as ELMO(Peters et al., 2018) and BERT(Devlin et al., 2019) have very poor performance. So
it is crucial to integrate the ability of commonsense-aware to natural language understanding model(Davis,
2017).

SemEval-2020 task4(Wang et al., 2020) aims to improve the ability of common sense judgment for
model, and we participated in two subtasks of this task. The dataset of SemEval-2020 task4 named
ComVE. Each instance in ComVE is composed of 5 sentences 〈s1, s2, o1, o2, o3〉. s1 and s2 will be used
for subtask a, and s1 or s2 with 〈o1, o2, o3〉 will be used for subtask b.

Subtask a(also known as Sen-Making task) aims to test a model’s ability of commonsense validation.
Specifically, given two statements 〈s1, s2〉 whose lexical and syntactic are similar, the object of Sen-
Making model is to determine which statement is common sense(compared to another one). For example,
s1 is put the elephant in the refrigerator and s2 is put the turkey in the refrigerator, a good model needs to
judge that the latter is more common sense.

Subtask b(also known as Explanation task) is a multiple choice task that aims to find the key reason
why a given statement does not make sense. For example, given a sentence that violates common sense
with three options 〈s, o1, o2, o3〉, where s is he put an elephant into the fridge, o1 is an elephant is much
bigger than a fridge, o2 is elephants are usually gray while fridges are usually white, and o3 is an elephant
cannot eat a fridge, the model needs to judge that o1 is the correct option.

The official baseline of Sen-Making use a pretraining language model(PLM) to dynamic encoding
the two input sentence, and use a simple full connection neural network to calculate the perplexities
respectively, and choosing the one with lower scores as the correct one. We believe that the baseline
method treats two sentences independently and ignores the inner relationship between the two sentences,
so we propose a novel model structure that fully considers the interaction between statements.

∗Corresponding author.
1Our team name on leaderboard is NEUKG, and the first three authors contributed equally to this work.
2These scores were obtained during the Post-Evaluation phase, and our scores in the Evaluation phase are 90.04 / 93.8.
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The official baseline of Explanation treats the task as BERT-like multiple choice task(Devlin et al.,
2019). We think that the baseline model doesn’t make full use of the input data. So we design a structure
to incorporate another statement that is common sense to existing model.

In addition, we believe that fine-tuning on similar subtask can improve the performance of the current
subtask because there are many commonalities between the two subtasks, so we propose a novel transfer
learning mechanism between Sen-Making and Explanation.

The proposed system named LMVE, it is a neural network model(includes two sub-modules to solve
both subtask a and b) bases on large scale pretraining language model.

Our contributions are as follows:

• First, we propose subtask level transfer learning that help share information between subtasks.

• Second, we propose a novel structure to calculate the perplexity of sentence, which takes into account
the interaction between sentences in a pair.

• Third, we propose the hint sentence mechanism that will help improve the performance of multiple
choice task.(subtask b).

2 System Description

We consider our model for both Sen-Making and Explanation as two parts: encoder and decoder. Encoder
is mainly used for getting the contextual representation of input sentence tokens. In recent years, some
pretraining language models including BERT(Devlin et al., 2019), RoBERTa(Liu et al., 2019) and
ALBERT(Lan et al., 2020) have been proven beneficial for many natural language processing (NLP)
tasks(Rajpurkar et al., 2016; Bowman et al., 2015). These pretrained models have learned general-purpose
language representations on a large amount of unlabeled data, therefore, adapting these models to the
downstream tasks can bring a good initialization for parameters and avoid training from scratch(Xu et
al., 2020). So we tried some popular PLMs as encoders. Decoder consists of several simple linear layers
whose number of parameters are far less than encoder, and the role of decoder is to fuse the output of
encoder and predict the answer.

2.1 LMVE for Sen-Making Task
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Figure 1: The model architecture for Sen-Making task, (a) is official baseline and (b) is ours. The yellow
point denotes the vector representation of the output sequence(same as below).

Figure 1(a) is the official baseline model(Wang et al., 2019), which regards two sentences as inde-
pendent individuals. But in ComVE, there are certain similarities(lexical and grammatical) between the
two statements, so we think that the interaction between the two sentences is helpful to improve the
performance of the model. Figure 1(b) gives an overview of our model for Sen-Making task which is
mainly composed of three modules including token encoding, feature fusion and answer prediction.
Encoding: Let {x10, ..., x1p} and {x20, ..., x2q} represent one-hot vectors for the first sentence and
the second sentence in an instance, we first concatenate them and add some special tokens
like Figure 1(b), then we will get two sequences {x[CLS], x

1
0, ..., x

1
p, x[SEP ], x

2
0, ..., x

2
q , x[SEP ]} and
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{x[CLS], x
2
0, ..., x

2
q , x[SEP ], x

1
0, ..., x

1
p, x[SEP ]}. The two sequences will be fed into ALBERT respec-

tively. We use U i ∈ Rd×n and V i ∈ Rd×n denote outputs of i-th transformer block in ALBERT, where d
is the hidden size of model, n is the sequence length, and i ∈ {0, ..., L− 1}.
Fusion: Some pretraining language model(BERT et al.) usually take the first token (corresponds to
[CLS]) of the output of last transformer block as the representation of a sequence, but we use the weighted
sum of the representation of first token in all transformer block outputs as the final representation3. The
following equations describe the process of fusion:

r0i = U i
0 r1i = V i

0 (1)

αi =
exp(ωi)∑
j exp(ωj)

(2)

xk =

L−1∑
i=0

αir
k
i (3)

where ω ∈ Rd is a trainable parameter and i ∈ [0, L− 1]. We can regard xk as the representation of k-th
statement(k ∈ {0, 1}).
Answer Prediction: This module maps the output of the fusion layer to a probability distribution of
answer. Given w ∈ Rd and b ∈ R as learnable parameters, it calculates the answer possibility as

p (k) = softmax (wxk + b) (4)

We define the training loss as cross entropy loss function:

La = − 1

N

N∑
i=1

p(yi) (5)

where N is the number of samples in the dataset and yi ∈ {0, 1}.

2.2 Hint Sentence mechanism
Before formally introducing our model for Explanation task, let’s first introduce the hint sentence
mechanism.

In official baseline(Wang et al., 2019), the against common sense statement will be concatenated with
three options respectively and fed into the model. We believe that this form of input does not make full
use of the data in the ComVE. Specifically, for an instance 〈s1, s2, o1, o2, o3〉 in ComVE, it is assumed
that s1 does not conform to common sense, then 〈s2, o1, o2, o3〉 will be used to train the baseline model or
to predict answer. However, in this process, s1 was abandoned. We believe that another common sense
statement(s1) in statement pair contains some useful information, and should be incorporated into our
model.

So we propose hint sentence mechanism: A hint sentence is common sense and its lexical and syntactic
are similar to the given against common sense statement and they differ by only few words. In other
words, we call the another sentence in the sentence pair a hint sentence.

The process of how the hint sentence is integrated into the existing model can be referred to next section
and Figure 2. The results of ablation experiment(Sec 3.6) show that hint sentence mechanism can greatly
improve the performance of our model for Explanation task.

2.3 LVME for Explanation Task
Figure 2 gives an overview of our model for Explanation task. it also has three modules.

Let {s0, ..., sp}, {h0, ..., hq} and {oi0, ..., oiri} represent one-hot vectors for the input statement, hint
sentence and i-th option in an instance, where i ∈ {0, 1, 2} and p, q and r is the length of them, we
first concatenate them and add some special tokens like Figure 2, then we will get three sequences

3Subsequent experimental results show that the performance using the last 4 layers is the best.
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Figure 2: The model architecture for Explanation task.

{x[CLS], s0, ..., sp, x[SEP ], h0, ..., hq, x[SEP ], o
i
0, ..., o

i
ri , x[SEP ]}. Then the three sequences will be fed

into ALBERT respectively.
Similar to last sub-section, each sequence will get a representation vector after fusion, and then the

three representation vector will pass a linear layer like Equation 4 to calculate the probability distributions
of answer.

We define training loss as

Lb = − 1

N

N∑
i=1

p(yi) (6)

where N is the number of samples in the dataset and yi ∈ {0, 1, 2} is true label.

2.4 Subtask Level Transfer Learning
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Figure 3: The process of subtask level transfer learning.

Transfer learning is a research problem in machine learning that focuses on storing knowledge gained
while solving one problem and applying it to a different but related problem. PLM is a typical example of
transfer learning and we call it task level transfer learning.

Sen-Making task and Explanation task are both generalized multiple choice tasks, and there is an asso-
ciation between the input data for them, so we believe that in SemEval-2020 Task 4, fine-tuning on similar
subtask can improve the performance of the current subtask.

Subtask level transfer learning refers to use the encoder after fine-tuning on subtask a(Sen-Making) to
train subtask b(Explanation) and vice versa. The process of Subtask level transfer learning are shown in
Figure 3.

3 Experiments and Analysis

3.1 Dataset
ComVE include 10000 samples in train set and 1000 samples in dev/test set for both Sen-Making and
Explanation task. The average length of two statements in the Sen-Making task are both 8.26, exactly the
same. The average length of true reasons is 7.63 in Explanation task.

It should be noted that in SemEval-2020 Task 4, the test set of Explanation task is issued only after
Sen-Making task is completed, so it is impossible to use the test set of Explanation task to reverse deduce
the answer of subtask a test set.

3.2 Baseline
To verify the effectiveness of our model, we used ALBERT to replace the BERT in the official baseline,
leaving the rest unchanged. We do not perform subtask level transfer learning (Sec 2.4) on them.
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Figure 4: Learning curve on the training dataset.

3.3 Preprocessing

Data Augmentation: To enhance the robustness of our model, we use Google Sheets4 to perform back
translation technology on original texts to get augmented texts. Specifically, given a training sample
〈s1, s2, o1, o2, o3〉 we first translate the original statements s1, s2 to French and then translate them back
to English (denoted as ŝ1, ŝ2). 〈ŝ1, ŝ2, o1, o2, o3〉 will add to training dataset as a new sample. the size of
the dataset has doubled after augmentation.
Tokenization: We employ the tokenizer that comes with the HuggingFace(Wolf et al., 2019) PyTorch
implementation of ALBERT. The tokenizer lowercases the input and applies the SentencePiece encod-
ing(Kudo, 2018) to split input words into most frequent subwords present in the pre-training corpus.
Non-English characters will be removed.

3.4 Implementation Details

We use the Transformers5 toolkit to implemented our model and tune the hyper-parameters according to
validation performance on the development set. The hidden size is equal to the corresponding PLM. To
train our model, we employ the AdamW algorithm(Loshchilov and Hutter, 2019) with the initial learning
rate as 2e-5 and the mini-batch size as 48.

We also prepared an ensemble model consisting of 7 models for Sen-Making task and 19 for Explanation
task with different hyperparameter settings and random seeds. We used majority voting strategy to fuse
the candidate predictions of different models together.

Model Params Sen-Making Explanation
Random - 49.52 32.77
BERTbase(Devlin et al., 2019) 117M 88.56 85.32
BERTlarge(Devlin et al., 2019) 340M 86.55 90.12
XLNet(Yang et al., 2019) 340M 90.33 91.07
SpanBERT(Joshi et al., 2019) 340M 89.46 90.47
RoBERTa(Liu et al., 2019) 355M 93.56 92.37
ALBERTbase(Lan et al., 2020) 12M 86.63 84.37
ALBERTlarge(Lan et al., 2020) 18M 88.01 89.72
ALBERTxlarge(Lan et al., 2020) 60M 92.03 92.45
Ours(ALBERTxxlarge) 235M 95.68 95.48
Our-ensemble - 95.91 96.39

Table 1: Performance with different encoder.

4https://www.google.com/sheets/about
5https://github.com/huggingface/transformers
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3.5 Main Result

The result of our model for subtask a and subtask b are summarized in Table 1. We have tried different
pretraining language model as our encoder, and found that ALBERT based model achieves the state-of-
the-art performance.

Figure 4 shows a learning curve computed over the provided training data with testing against the
development set, and we can see that in the case of low-resource (only use 10%-20% training data of
target task), the performance of introducing subtask level transfer learning is significantly higher than
original implementation.

Sen-Making Model Acc ∆a

Our-single 95.68 -
w/o method b† 94.88 0.80
w/o data augmentation 95.43 0.25
w/o weighted sum fusion 95.32 0.36
w/o subtask level transfer 94.85 0.83
Baseline 93.24 2.44

Explanation Model Acc ∆b

Our-single 95.48 -
w/o hint sentence 93.47 2.01
w/o data augmentation 95.39 0.09
w/o weighted sum fusion 95.11 0.37
w/o subtask level transfer 94.98 0.50
Baseline 93.12 2.36

Table 2: Ablation study on model components. † means we use the model structure as Figure 1(a) and
Baseline means the model in Sec 3.2.

3.6 Ablation Study

To get better insight into our model architecture, we conduct an ablation study on dev set of ComVE, and
the results are shown in Table 2.

From the results we can see that subtask level transfer learning has a relatively large contribution
for both subtask a and b, which confirms our hypothesis that fine-tuning on similar task can improve
the performance of the current task. Data augmentation and weighted sum fusion also have minor
contributions due to the more robust dataset and more robust model.

For subtask a, we can see that compared with baseline method(Figure 1(a)), concatenating another
sentence as input can have a higher performance. We speculate that the reason is traditional method treat
two statements as independent individuals, and our method takes into account the inherent connection
between the two statements.

For subtask b, we can see from Table 2 that hint sentence makes a great contribution the overall
improvement. We think the reason is a common sense statement with a similar grammar and syntax does
help the model to determine why the input sentence is against common sense.

4 Conclusions

This paper introduces our system for commonsense validation and explanation. For Sen-Making task, we
use a novel pretraining language model based architecture to pick out one of the two given statements
that is against common sense. For Explanation task, we use a hint sentence mechanism to improve
the performance greatly. In addition, we propose a subtask level transfer learning to share information
between subtasks.

As future work, we plan to integrate the external knowledge base(such as ConceptNet6) into common-
sense inference.
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