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Abstract

This paper describes the CACAPO dataset,
built for training both neural pipeline and end-
to-end data-to-text language generation sys-
tems. The dataset is multilingual (Dutch
and English), and contains almost 10,000 sen-
tences from human-written news texts in the
sports, weather, stocks, and incidents domain,
together with aligned attribute-value paired
data. The dataset is unique in that the linguis-
tic variation and indirect ways of expressing
data in these texts reflect the challenges of real
world NLG tasks.

1 Introduction

The current paper presents the Combinations of
Aligned Data-Sentences from Naturally Produced
Texts (hereafter: CACAPO) dataset; a dataset for
data-to-text generation (the task of producing ad-
equate, fluent natural language text from non-
linguistic structured data, such as database records,
spreadsheets, knowledge graphs, tables, etc., Gatt
and Krahmer, 2018). The dataset contains sen-
tences from automatically scraped news texts for
the sports, weather, stock, and incidents domain in
English and Dutch, aligned with relevant attribute-
value paired data (see Figure 1 and Appendix A
for examples). To our knowledge, this is the
first dataset based on ‘naturally occurring’ human-
written texts (i.e., texts that were not collected in a
task-based setting), that covers various domains, as
well as multiple languages.

Neural Natural Language Generation (NLG) is
a promising technique, as neural NLG systems are
not bound by any special-purpose mechanisms, and
hence are argued to be easily adaptable to other
domains and languages (Oraby et al., 2019; Pudup-
pully et al., 2019; van der Lee et al., 2018). Yet
despite this advantage, it can still be challenging
to create a neural NLG system that achieves the

same rich and detailed output as a well-designed
traditional rule-based pipeline system (Novikova
et al., 2017; van der Lee et al., 2018; Moryossef
et al., 2019b). This is because a large-scale par-
allel dataset (i.e., a dataset with aligned texts and
relevant data) is required for training neural NLG
systems, and such datasets are not a common nat-
ural occurrence. This limitation is especially per-
sistent in neural pipeline architectures: neural ar-
chitectures modeled after the ‘traditional’ pipeline
architecture (Reiter and Dale, 2000) that sequen-
tially performs tasks related to document planning,
sentence planning and linguistic realization (Cas-
tro Ferreira et al., 2019). These architectures re-
quire an explicit representation for every interme-
diate step. The (enriched) WebNLG dataset (Gar-
dent et al., 2017a,b; Castro Ferreira et al., 2018)
is presently the only other dataset viable for both
end-to-end, as well as neural pipeline architectures.

The present paper thus presents a new automat-
ically scraped dataset that can be used for end-to-
end, as well as neural pipeline architectures. Fur-
thermore, it describes a collection process inspired
by Oraby et al. (2019), where collection starts with
the news reports and attribute-value datapoints are
constructed from them, which also enables rela-
tively low-effort extension and adaptation of the
current dataset (Section 3). Characteristics of the
dataset are described based on the methodology by
Perez-Beltrachini and Gardent (2017) (Section 4).
Finally, a baseline is developed for the dataset using
TGen (Dušek and Jurčı́ček, 2015) (Section 5).

The full dataset is freely available for research
purposes upon request, licensed under AusGoal
Restrictive Licence. A ‘thin’ version of the dataset
that contains the annotated data in combination
with the URLs of the scraped texts and the scrap-
ing tools is publicly available via https://github.
com/TallChris91/CACAPO-Dataset, licensed un-
der CC BY-NC-SA.

https://github.com/TallChris91/CACAPO-Dataset
https://github.com/TallChris91/CACAPO-Dataset
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Atribute Value
pitcherName CC Sabathia
teamName Blue Jays
teamName Yankees
hitNumber hitless
inningsPitched five

↓
All CC Sabathia did was hold the Blue Jays hitless over the

final five innings to give the Yankees a chance to rally.

Figure 1: Example of a set of attribute-value pairs (top) and
corresponding text (bottom).

2 Related work

Neural data-to-text NLG models have the ability to
produce texts without requiring handwritten rules
and templates, generating texts in a completely
data-driven way. However, neural data-to-text NLG
is struggling to overcome two critical bottlenecks,
identified by Oraby et al. (2019), that hamper the
performance of the models: (1) a data bottleneck,
a lack of (high quality, large scale) parallel data-text
datasets; and (2) a control bottleneck, which they
describe as an inability to control stylistic variation,
but can be more broadly described as the inability
to systematically control the generation process
and the generated output of a neural system.

2.1 Data bottleneck

The field has started to address the data bottleneck
issue recently, exhibited by an increase of parallel
data-text corpora. E2E (Novikova et al., 2017), and
WebNLG (Gardent et al., 2017a,b) are two prime
examples of this. Crowdsourcing techniques were
employed for the creation of these datasets, mean-
ing that humans were asked to write a text given
an input meaning representation (MR). This makes
it feasible to collect ample texts of good quality,
but such techniques can quickly become a finan-
cial burden, and require significant effort from the
researchers to design and assemble (Oraby et al.,
2019). This amount of time can be reduced as is
shown by the construction of the ToTTo dataset
(Parikh et al., 2020), where humans edited exist-
ing Wikipedia phrases to reflect a given input MR,
rather than writing text phrases from scratch. This
still requires significant resources, however.

Compiling a dataset via crowdsourcing usually
ensures that texts are a direct verbalization of the
aligned data, which limits the amount of noise and
inaccuracies present in the datasets. However, peo-

Tag Entity
PATIENT-1 CC Sabathia
PATIENT-2 Blue Jays
PATIENT-3 hitless
PATIENT-4 five
PATIENT-5 Yankees

↓
All PATIENT-1 did was hold the PATIENT-2 PATIENT-3
over the final PATIENT-4 innings to give the PATIENT-5 a

chance to rally.

Figure 2: Mapping between tags and entities for the
corresponding delexicalized template.

ple have increasingly started to criticize the real-
ism of these datasets as they are usually not rep-
resentative of real world scenarios and language
use.1 Verbalizations by crowdsource workers are
different from how data is usually verbalized by
professional journalists, for instance, whose focus—
besides high fidelity—is also on producing fluent
and enjoyable texts. Such a focus can result in more
indirect descriptions of data or superfluous informa-
tion. Generating texts from these indirect descrip-
tions may be more challenging as the NLG systems
need to learn how to abstract from the ‘noise’ in
these datasets. A different but related problem is
that the presence of superfluous descriptions in
input make these neural systems more prone to
‘hallucinations’, i.e., producing output information
that is not present in the input data (Reiter, 2018a).
However, having a system that performs well on
such unedited texts might make it more attainable
to develop systems that can be deployed in non-
academic settings, as these texts are representative
of such settings. Companies for which data-to-
text systems may be especially relevant (i.e., press
agencies, publishers, weather institutes, etc.), often-
times have an extensive archive of historical data
and human-written texts, that would contain similar
types of ‘noise’ in their data representation.

Therefore, it seems imperative to also pur-
sue other dataset collection techniques—such as
text and data collection—by scraping publicly
available sources. Datasets that were compiled
via this method have also seen a surge recently,
with YelpNLG (Oraby et al., 2019), RotoWire
(Wiseman et al., 2017), and RotoWire-inspired
datasets like RotoWire-FG (Wang, 2019) and
MLB (Puduppully et al., 2019). Using this method

1See, for instance, the discussion at
https://twitter.com/yoavgo/status/
1281971375029325824.

https://twitter.com/yoavgo/status/1281971375029325824
https://twitter.com/yoavgo/status/1281971375029325824
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enables data and text collection without having to
spend as much time and resources as would be nec-
essary with crowdsourcing techniques. However,
most of the current automatically scraped datasets
are for document-level texts, which generally re-
quires different architectural approaches than the
shorter sentence-level or phrase-level texts that are
most commonly found in the datasets compiled via
crowdsourcing. Furthermore, they are limited to
one domain (restaurants, basketball, and baseball,
for YelpNLG, RotoWire, and MLB respectively),
and one language (English). This makes it difficult
to train domain-invariant systems.

2.2 Control bottleneck
Furthermore, most existing datasets are con-
structed for end-to-end architectures, where the
non-lingustic input is converted into natural lan-
guage without explicit intermediate representations
in between (Castro Ferreira et al., 2019). By con-
trast, researchers have started to experiment with
neural pipeline methods, in which the data con-
version process happens via one or more explicit
intermediate transformations (see, for instance,
Castro Ferreira et al., 2019; Jiang et al., 2020;
Moryossef et al., 2019a,b). These methods enable
the control over parts of the data-to-text conversion
process, making it possible to develop hybrid (e.g.
rule-based and neural) systems. Additionally, a di-
rect comparison between end-to-end and pipeline
approaches suggests that pipeline approaches lead
to improved output quality, and decreases data hal-
lucination and data omission; two challenges for
datasets compiled using unedited texts from pub-
licly available sources (Castro Ferreira et al., 2019).
However, pipeline architectures require a training
dataset containing the intermediate representations
in order to be trained. And, with the exception
of the Enriched WebNLG dataset (Castro Ferreira
et al., 2018), there are currently no datasets facili-
tating such an approach.2

2.3 Current work
The current work introduces the CACAPO dataset
which addresses the aforementioned limitations
of the existing datasets: it contains intermediate
representations for discourse ordering, text struc-
turing, lexicalization, referring expression genera-
tion, and textual realization for pipeline approaches

2At least, datasets that start from data. Surface realization
datasets such as the one employed in (Mille et al., 2019) can
be seen as facilitating the pipeline approach.

such as the one by Castro Ferreira et al. (2019).
Furthermore, it is a sentence-level dataset contain-
ing unedited sentences from news articles written
by professional journalists and meteorologists (see
Section 3 for details).

Finally, many of the datasets that are commonly
used currently lack domain diversity (Radev et al.,
2020) and are solely constructed for the English
language (with the exception of WebNLG, see Cas-
tro Ferreira et al., 2018; Shimorina et al., 2019).
The CACAPO dataset contains texts from the sports,
weather, stocks, and incidents domain for both
Dutch and English.

3 The CACAPO dataset

3.1 Collection methods
Both the Dutch and English version of the CACAPO
dataset contain the same four domains (sports,
weather, stocks, and incidents) albeit with different
events and hence also some topical variety between
both languages. For each domain a scraping tool
was used or custom built that either fully automat-
ically collected relevant texts, or collected these
texts with as little human effort as possible (e.g
humans needed to copy the URLs, website source
code, or needed to copy some aspects to a custom-
built tool).3 The following texts were collected:

• Dutch sports domain texts cover soccer
match reports from the 15/16 and 16/17 sea-
son of the Dutch Eredivisie, the highest pro-
fessional soccer league in The Netherlands.
Texts were scraped from 10 professional news
websites using Google search queries for all
matches played during the 15/16 and 16/17
seasons (teams and play date). In total, 6,600
texts were scraped (2,101,338 tokens; 27,619
types).

• Dutch stocks domain texts cover daily re-
ports on stock exchanges, company stock list-
ings, (crypto)currency exchange rates, and oil
prices. These reports were collected from 49
different newspapers using Nexis Uni,4 cov-
ering all reports from January 2019-January
2020. A total of 4,280 texts were collected
(1,211,842 tokens; 22,685 types).

• Dutch weather domain texts cover several-
daily short-term weather forecasts for The

3See https://github.com/TallChris91/
CACAPO-Dataset for the collection tools.

4http://www.nexisuni.com/

https://github.com/TallChris91/CACAPO-Dataset
https://github.com/TallChris91/CACAPO-Dataset
http://www.nexisuni.com/
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Netherlands from the Royal Netherlands Me-
teorological Institute (KNMI); the Dutch na-
tional weather service. These texts originate
from the “complete weather report” prognosis,
found on the KNMI website5. The weather
reports were obtained for all of 2019, totalling
5,897 texts (1,099,556 tokens; 1,076 types).

• Dutch incidents domain texts originate from
Hendriks (2019) who collected data from
https://www.hetongeluk.nl/; an online
database for news articles about traffic inci-
dents, which in total contains traffic incident
reports from 139 websites from 2013 to 2019.
This collection contains 1,600 texts (154,596
tokens; 8,919 types).

• English sports domain texts cover baseball
reports from the American MLB League, the
top league in American professional base-
ball. The baseball reports were obtained us-
ing the scraper made available by Puduppully
et al. (2019) to collect their MLB dataset cov-
ering 2007-2018. The texts originate from
ESPN; an American sports website.6 A total
of 26,393 (12,852,342 tokens; 34,123 types)
were collected for this domain.

• English stocks domain texts cover the same
topics as the Dutch stocks domain texts. The
texts were obtained using Google News by
searching news items containing “stock index”
and “stock market” in the period of January
2019-January 2020. 1,109 texts from 182 web-
sites were collected (621,997 tokens; 23,216
types).

• English weather domain texts cover weather
forecasts for several countries (e.g., Canada,
United States, India, Ireland). The weather
forecasts were collected using Google News
by searching news items containing “weather
forecast” in the period of January 2019-2020.
This resulted in a collection of 926 texts from
215 websites (341,622 tokens; 11,426 types).

• English incidents domain texts cover gun
violence incidents from the Gun Violence
Archive,7 a database on gun violence inci-
dents, which in total contains 3,180 incident

5https://www.knmi.nl/nederland-nu/
weer/verwachtingen

6http://www.espn.com/
7http://www.gunviolencearchive.org/

reports from 596 websites ranging from 2012
to 2019 (1,105,567 tokens; 26,968 types).

Thus, in total 51,575 texts were collected via
these different methods. For the CACAPO dataset,
all texts above 325 words were discarded as most
basic news reports typically do not exceed that
amount of words (Asbreuk et al., 2017), leaving
20,630 texts.8 From this sample, 200 texts were
randomly selected for each language and domain (a
total of 1,600 texts; 12.89% of the text selection) to
obtain a representative number of sentences while
keeping the annotation load reasonable (see Sec-
tion 3.2). These texts were automatically split into
sentences using a sentence tokenizer. SpaCy (Hon-
nibal and Montani, 2017) was used as a tokenizer
for the Dutch part, and SoMaJo for the English part
(Proisl and Uhrig, 2016). Finally, the sentences
were assigned to training, validation, and testing
sets in a 76.5, 8.5, 15 ratio—the same ratio that
(Novikova et al., 2017) used. All sentences occur-
ring in the selected texts are part of the CACAPO
dataset and the order of occurrence of the sentences
in a text was preserved in the dataset.

3.2 Data annotation
The data annotation process followed after the sam-
ple sentences were tokenized. Sentences were man-
ually aligned with data using Prodigy9, a data an-
notation tool (Montani and Honnibal, 2018), in a
attribute-value pair format, done by two expert an-
notators. The annotators annotated a part of the
dataset jointly (1,755 sentences), resulting in Co-
hen’s κ = 0.67 (substantial agreement; Landis and
Koch, 1977) and a 70.92% agreement. This agree-
ment was deemed high enough for a single coder
per item approach for the rest of the dataset. One of
the annotators developed the guidelines with a defi-
nition of each category and examples of passages
belonging to that category resulting in relatively
quick acquisition of the categories. Annotation
took between 5 and 15 minutes per text on average.

All annotated attributes can be found in Ap-
pendix C. The amount of types that were annotated
varied between 10 (Dutch/English stocks domain)
and 76 (English sports domain). Which labels to an-
notate was decided upon by doing a practice set of

8The full collection of unlabeled texts and the selection
of unlabeled texts is freely available upon request—licensed
under AusGoal Restrictive Licence—to facilitate extension
of the dataset as well as other tasks, such as information
extraction.

9https://prodi.gy/

https://www.hetongeluk.nl/
https://www.knmi.nl/nederland-nu/weer/verwachtingen
https://www.knmi.nl/nederland-nu/weer/verwachtingen
http://www.espn.com/
http://www.gunviolencearchive.org/
https://prodi.gy/
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10 texts. All data labels are based on the 5 Ws and
1 H questions (Who, What, When, Where, Why,
and How). As most journalism schools teach stu-
dents to write news articles that focus on answers
to the 5 Ws and 1 H questions (Canavilhas, 2007;
Kussendrager et al., 2018).

‘Who’ data is for instance player and referee
information for the sports domain (assistName,
goalName, goalkeeperName, pitcherName, pitcher-
Record, umpireName) and suspect and victim
information for the incidents domain (suspec-
tAge, suspectGender, victimBased, victimName,
victimOccupation). Examples of ‘What’ data
are stock price increases and decreases for the
stocks domain (stockChange, stockChangePercent-
age, stockPoints), and information about cloudi-
ness, wind, and weather type for the weather do-
main (cloudAmount, gustChange, temperatureCel-
sius, weatherType). ‘When’ data types are the
(next) match date for the sports domain (matchDate,
matchTime, nextMatchDate), and the date/time that
an incident occurred for the incidents domain (date-
Time, accidentDate). ‘Where’ data is the stadium
where a match is played for the sports domain (sta-
diumPlayed, locationPlayed), or where weather
events will happen for the weather domain (loca-
tionArea). ‘Why’ data is for example the cause
of a traffic incident for the incidents domain (inci-
dentCause). And ‘How’ data can be information
about the way a goal was scored or a ball was hit
for the sports domain (goalType, strikingType), and
how a traffic/shooting incident took place for the
incidents domain (incidentType, shootingType).

3.3 Intermediate representations

After the data annotation process was completed,
the annotated data and collected texts were then
used to create explicit intermediate representations
suitable for neural pipeline architectures. The
CACAPO dataset is saved in a similar XML format
as the Enriched WebNLG dataset (Castro Ferreira
et al., 2018) (see Figure 3 for an example) to en-
able effortless testing of systems designed for this
dataset. This also means that the CACAPO dataset
is suitable for pipeline systems that convert data
into text using the same 5 sequential steps as Cas-
tro Ferreira et al. (2019), which follows the original
pipeline architecture of (Reiter and Dale, 2000):

1. Discourse Ordering is the task of de-
termining in which order to present the
data that should be verbalized in the tar-

<e n t r y c a t e g o r y =” E n g l i s h I n c i d e n t s ” e i d =” Id2 ” s i z e =” 3 ”>
<o r i g i n a l d a t a s e t>

<o d a t a>v ic t imAge | 22−year−o l d</ o d a t a>
<o d a t a>v i c t i m S t a t u s | g r a z e d i n t h e t h i g h</ o d a t a>

</ o r i g i n a l d a t a s e t>
<l e x comment=” good ” l i d =” Id1 ”>

<s o r t e d d a t a s e t>
<s e n t e n c e ID=” 1 ”>

<s d a t a>v ic t imAge | 22−year−o l d</ s d a t a>
<s d a t a>v i c t i m S t a t u s | g r a z e d i n t h e

↪→ t h i g h</ s d a t a>
</ s e n t e n c e>

</ s o r t e d d a t a s e t>
<r e f e r e n c e s>

<r e f e r e n c e e n t i t y =”22−year−o l d ” number=” 1 ”
↪→ t a g =”ENTITY−1”
↪→ t y p e =” d e s c r i p t i o n ”>22−year−o l d
↪→ </ r e f e r e n c e>

<r e f e r e n c e e n t i t y =” g r a z e d i n t h e t h i g h ”
↪→ number=” 2 ” t a g =”ENTITY−2”
↪→ t y p e =” d e s c r i p t i o n ”>g r a z e d i n t h e
↪→ t h i g h</ r e f e r e n c e>

</ r e f e r e n c e s>
<t e x t>A 22−year−o l d was g r a z e d i n t h e t h i g h .</ t e x t>
<t e m p l a t e>A ENTITY−1 was ENTITY−2 .</ t e m p l a t e>
<l e x i c a l i z a t i o n>DT[ form= u n d e f i n e d ] A ENTITY−1

↪→ VP[ a s p e c t = s imple , t e n s e = p a s t ,
↪→ v o i c e = a c t i v e , p e r s o n = n u l l , number= s i n g u l a r ]
↪→ be ENTITY−2 .</ l e x i c a l i z a t i o n>

</ l e x>
</ e n t r y>

Figure 3: Example of an XML formatted data instance
in the CACAPO dataset.

get text. This can be trained using
the MRs found in the (alphabetically or-
dered) <originaldataset>, and the
<sorteddataset> that is ordered based
on the appearance of the MR in the sen-
tence. This ordering is determined based on
the string position information provided by
Prodigy.

2. Text Structuring is the task of organizing the
ordered triples into paragraphs and sentences.
The <sorteddataset> tag also contains
sentence information relevant for the Text
Structuring step. As the CACAPO dataset is a
sentence-level dataset, Text Structuring is not
a directly relevant step. Although the sentence
information in the <sorteddataset>
tag allows for extensions to phrase-level or
paragraph-level instances.

3. Lexicalization is the task of finding the
words and phrases that describe the in-
put data correctly (Reiter and Dale, 2000).
This means using the information found in
<sorteddataset> to (ideally) generate
the string in<lexicalization>, for this
dataset. The string found in this tag is a delexi-
calized version of the original sentence (found
in <text>). This <lexicalization>
tag not only contains information to se-
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lect accurate words and phrases to describe
an MR, but also contains information for
the two steps further ahead in the pipeline.
The ENTITY-[0-9] placeholders indicate
where MRs should be realized. The entity
number indicates which MR to realize based
on the order in <sorteddataset>. Fur-
thermore, the delexicalized string contains
syntactical information. For (lemmatized)
verbs, it stores aspect, mood, tense, voice and
number in a VP tag. And it stores the form of
determiners in a DT tag.

Delexicalization was done by a script that
matches the annotated data with the original
string, using the string location information
provided by Prodigy. The annotation of syn-
tactical information and lemmatization was
done using CoreNLP (Manning et al., 2014)
for English, and DeepFrog10 for Dutch.

4. Referring Expression Generation is the
task of generating the correct entities in a
text (Krahmer and van Deemter, 2012). In
this step, a system can be trained to fill the
ENTITY-[0-9] placeholders found in the
<lexicalization> string with the data
found in the <references> tag.

5. Textual Realization is the task of performing
the final steps to convert the non-linguistic
data into natural language text. For this
dataset, this means converting the lemmatized
verbs and determiners to a form that is congru-
ent with the MR, using the VP and DT tags
found in <lexicalization>.

Of course, the dataset also lends itself for data-
to-text generation in an end-to-end fashion. For
this, a system can be trained on the information in
<originaldataset> and <text>.

4 Statistics

We compare the CACAPO dataset to the Enriched
WebNLG dataset (Castro Ferreira et al., 2018; Gar-
dent et al., 2017a,b), as these datasets are compa-
rable in the sense that both are multilingual, mul-
tidomain, and contain explicit intermediate steps
that allow for neural pipeline architectures to be
employed. However, they are different in the fact
that WebNLG is constructed using crowdsourcing,
while CACAPO is constructed using unedited texts

10https://github.com/proycon/deepfrog

scraped from publicly available sources. Similar to
Novikova et al. (2017) we compare the two datasets
on size, lexical richness, and sentence complexity.

4.1 Size

Based on, Novikova et al. (2017) and Perez-
Beltrachini and Gardent (2017), we employ the
following size metrics to compare the Enriched
WebNLG dataset (Castro Ferreira et al., 2018) to
our dataset (see Table 1):

• Number of instances: Absolute number of
texts in the dataset (single sentences for
CACAPO, single sentences and multi-sentence
phrases for WebNLG). This gives a direct in-
dication of the dataset size.

• Number of unique MRs: Number of dif-
ferent MRs appearing in the dataset (set of
attribute-value paired data for CACAPO, set
of RDF-triple data for WebNLG aligned to a
text). Besides dataset size, this also gives an
indication of training difficulty: more unique
MRs means a greater challenge to train mod-
els on the data.

• Instances per MR: Average number of ver-
balizations for one MR. The more references
for an MR appear in the training set, the better
models can be trained to learn how to verbal-
ize this MR.

• Slots per MR: Average number of data
points (single attribute-value paired data for
CACAPO, single RDF-triples for WebNLG)
that compose an MR.

• Words per instance: Average number of
words appearing in an instance (single sen-
tences for CACAPO, single sentences and
multi-sentence phrases for WebNLG).

• Words per sentence: Average number of
words appearing in a sentence.

• Sentences per instance: Average number of
sentences appearing in an instance.

The metrics in Table 1 show that the CACAPO
dataset and Enriched WebNLG dataset are very
similar in size, as displayed by the number of
instances and number of unique MRs, with the
CACAPO dataset being slightly bigger. Also, in
terms of slots per MR, and words per reference,

https://github.com/proycon/deepfrog
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No. of No. of Refs/MR Slots/MR W/Inst W/Sent Sents/Inst
instances unique MRs

CACAPO (Dutch) 10,486 8,833 1.19 (1-285) 2.74 15.19 15.19 1 (1-1)
CACAPO (English) 10,566 9,352 1.17 (1-290) 2.83 18.52 18.52 1 (1-1)
WebNLG (English) 9,674 9,604 2.63 (1-12) 2.95 20.03 14.26 1.4 (1-6)
WebNLG (German) 7,812 7,753 2.63 (1-12) 2.96 19.22 13.64 1.4 (1-6)

Table 1: Descriptive statistics for various size-related dimensions.

the CACAPO dataset and the Enriched WebNLG
dataset seem comparable. However, on average,
there are fewer references for MRs in the CACAPO
dataset compared to the WebNLG dataset. This
indicates that it would be more challenging for
data-to-text generation systems to learn alignments
between MRs and text for the CACAPO dataset
compared to the WebNLG dataset.

4.2 Lexical Richness

Following Novikova et al. (2017), we investigate
various aspects of lexical richness by looking at
traditional measures, such as the number of tokens,
and types, and type-token ratio (TTR; see Table 2).
And we include the more robust mean segmen-
tal TTR (MSTTR), which divides the dataset into
equal segments of a given token length (here: 25
tokens) and calculates the average TTR of all these
segments. Finally, we also include Lexical Sophis-
tication (LS). Also known as Guiraud Advanced
(Daller et al., 2003) which gauges the number of
unique words in a dataset; another way to mea-
sure lexical richness. We calculate the Guiraud
Advanced metric by taking the proportion of word
types that are not in the top 2,000 most frequent
words in large and diverse corpora for each lan-
guage: the British National Corpus (British Na-
tional Corpus, 2007), the SoNaR 500 corpus (Oost-
dijk et al., 2013), and the German Internet cor-
pus (Sharoff, 2006), for the English and Dutch
CACAPO dataset, with additional statistics for En-
glish and German WebNLG added for comparison,
respectively. Each of these corpora contains a large
amount of texts and covers a wide array of topics
and domains. Therefore, we believe that their top
2,000 most frequent words are representative of the
language.

The number of tokens in Table 2 show that the
texts of the CACAPO dataset are somewhat smaller
than those found in the WebNLG dataset. However,
supporting our expectations, the CACAPO dataset is
the more lexically varied dataset of the two, as illus-
trated by the higher TTR and MSTTR scores, and

Tokens Types LS TTR MSTTR

CACAPO (NL) 147,770 10,152 0.87 0.07 0.87
CACAPO (EN) 175,860 11,485 0.87 0.07 0.89
WebNLG (EN) 491,731 5,521 0.84 0.01 0.75
WebNLG (DE) 376,184 6,433 0.86 0.02 0.78

Table 2: Size and lexical diversity metrics.

the higher absolute number of types. The higher
amount of lexical diversity found in the CACAPO
dataset is a further indication that training a data-
to-text generation system to produce high quality
output may be more challenging for this dataset.
The lexical sophistication metric shows a similar
proportion of infrequent words in the CACAPO and
WebNLG dataset, which suggests that both datasets
are similarly diverse in terms of the amount of non-
standard language found in the dataset.

Also similar to Novikova et al. (2017), we have
analyzed the appearance of bigrams and trigrams
in the dataset. Focusing on (1) the proportion of
bigrams and trigrams appearing only once in the
CACAPO dataset and WebNLG dataset; and (2) on
the average frequency of bigrams and trigrams of
those that appear more than once. These metrics
give further indication of lexical richness: a high
amount of unique bigrams and trigrams, and a low
average frequency for non-unique bigrams and tri-
grams makes it more challenging to train a neural
data-to-text system.

The results in Table 3 show further evidence that
the English and Dutch versions of the CACAPO
dataset are more lexically rich compared to the En-
glish and German versions of the WebNLG dataset.
The CACAPO dataset has a much larger proportion
of bigrams and trigrams that appear only once. Fur-
thermore, of the bigrams and trigrams appearing
more than once, the average frequency of bigrams
and trigrams in the CACAPO dataset is much lower
than for the WebNLG dataset.

4.3 Sentence complexity

To assess the complexity of sentences in the
WebNLG and CACAPO datasets, we look at the
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2-grams 3-grams
% = 1 x > 1 % = 1 x > 1

CACAPO (NL) 73.73% 6.99 85.18% 4.73
CACAPO (EN) 74.77% 5.78 88.32% 3.60
WebNLG (EN) 45.29% 18.92 57.09% 9.41
WebNLG (DE) 49.35% 14.19 61.65% 7.54

Table 3: Proportion of bigrams and trigrams occuring
once, and average frequency of bigrams and trigrams
that occur more than once.

revised Developmental Level scale (Rosenberg and
Abbeduto, 1987; Covington et al., 2006), also
known as D-Level (similar to Novikova et al.,
2017). We used D-Level Analyser (Lu, 2009)
to obtain the D-Level proportions for the English
datasets, and T-Scan (Pander Maat et al., 2014) to
find the D-Level proportions for the Dutch dataset.
There are currently no tools to obtain D-Level for
German, but it can be assumed that the composition
of this dataset is similar to its English WebNLG
counterpart, as the German WebNLG dataset is a
close translation of that version (Castro Ferreira
et al., 2018). The D-Level scale contains 8 levels:
level 0 being the simplest, and level 7 the most com-
plex. Complexity is determined by, for instance,
complex syntactic structures, subordinate clauses,
and referring expressions.

Table 4 shows sizable differences between the
datasets in terms of complexity. The Dutch
CACAPO dataset predominantly consists of sim-
pler sentences (below level 4), while the English
version of the dataset has a large portion of higher
level sentences. The WebNLG resides somewhere
in between those two in terms of complexity. This
would mean that the Dutch version of the CACAPO
dataset would be the least challenging for systems
to learn the sentence structure of, and the English
version of the dataset the most challenging.

5 Baseline system performance

TGen, a sequence-to-sequence model using Atten-
tion (Dušek and Jurčı́ček, 2015), was used to es-
tablish a baseline on the CACAPO dataset.11 The
performance of TGen was evaluated on the test
data of the CACAPO dataset using BLEU (Pap-
ineni et al., 2002), NIST (Doddington, 2002), ME-
TEOR (Banerjee and Lavie, 2005), ROUGE-L
(Lin, 2004), CIDEr (Vedantam et al., 2015) and

11Parameters are provided in Appendix B. It should be
noted that the system is only trained in an end-to-end fashion.

CACAPO CACAPO WebNLG
(NL) (EN) (EN)

0 49.3% 37.31% 49.27%
1 4.38% 2.57% 0.11%
2 28.13% 10.44% 20.24%
3 6.45% 9.14% 9.62%
4 0.4% 2.12% 0.22%
5 5.89% 9.22% 4.66%
6 3.21% 1.13% 3.94%
7 2.24% 28.08% 11.93%

Table 4: D-Level proportions.

BertScore (Zhang et al., 2020) (Table 5).12

The results show that the TGen baseline scores
vary considerably across domains, as was to be
expected. The Dutch Stocks subcorpus offers a
positive outlier, which might have to do with the rel-
atively few labels and consistent language of the do-
main. It should be noted that the same parameters—
originally used for the E2E challenge (Novikova
et al., 2017)—were applied to all domains, which
might mean that the model is too large and com-
plex for some domains (such as Dutch Weather and
English Incidents, where the texts are highly con-
sistent translations of the data, and the domain only
contains a small number of types), resulting in over-
fitting. In other cases, the dataset is arguably too
small, which—combined with its lexical richness—
might make it difficult for a neural NLG model
to be trained on. However, in all cases, parameter
tuning, application of different models, and tok-
enization/delexicalization of the training texts (as
done by Novikova et al., 2017) is likely to increase
the text quality and automatic metrics scores. Ad-
ditionally, it seems worthwhile to explore ways of
semi-automatically extending the training corpora,
as we hope to do in future work.

6 Conclusion

This paper described the CACAPO dataset. A multi-
lingual, multi-domain dataset that enables the use
of neural pipeline architectures, as well as end-
to-end architectures. The dataset is comparable
in size to the WebNLG dataset, and its lexical
richness—due to the fact that the texts directly
originate from journalistic articles—provides in-
teresting challenges. Furthermore, the fact that
these texts were derived from ‘naturally occurring’

12METEOR and BertScore were calculated using the au-
thors’ provided scripts, while BLEU was calculated using
SacreBLEU (Post, 2018), NIST using NLTK (Bird et al.,
2009), and ROUGE-L and CIDEr using nlg-eval (Sharma
et al., 2017).
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Domain BLEU NIST BertScore METEOR ROUGE-L CIDEr

Incidents (Dutch) 4.65 1.13 70.29 10.93 20.02 0.27
Stocks (Dutch) 17.46 2.44 74.13 21.84 27.95 0.95
Sports (Dutch) 1.92 0.86 68.39 7.34 13.85 0.14
Weather (Dutch) 1.66 0.15 64.11 7.11 11.71 0.10
Incidents (English) 0.68 0.36 82.37 5.92 11.89 0.07
Stocks (English) 0.41 0.26 80.08 3.19 5.20 0.01
Sports (English) 1.27 0.64 82.50 5.66 12.64 0.08
Weather (English) 6.80 1.20 86.24 8.74 17.61 0.65

Table 5: TGen results on the CACAPO dataset.

texts means that there may be superfluous infor-
mation, as well as indirect descriptions of the data
in the text. This is challenging for NLG systems,
as shown by the system performance scores when
performing an end-to-end data-to-text task on the
dataset using TGen (Dušek and Jurčı́ček, 2015).
However, the dataset closely mirrors real-world sce-
narios in which companies oftentimes have large
amounts of human-written texts that are not pur-
posefully written for NLG applications, accompa-
nied by corresponding data.

Bias The fact that the CACAPO dataset is based
on ‘naturally occurring’ data addresses the issue
of datasets being not representative of real world
NLP issues. However, it should also be noticed
that having unedited texts in the dataset means that
the biases from the original data are still present
in the dataset and may lead to further generation
of biased texts (Leppänen et al., 2020). Therefore,
texts generated with this dataset, as well as the
texts in the dataset itself, could warrant more tradi-
tional linguistics-oriented text analysis research to
investigate biases that might exist.

Evaluation NLG has recently increased its fo-
cus on evaluation and multiple researchers have
argued that automatic metrics lack interpretability
and do not correlate well with human judgments
(see, for instance, Reiter, 2018b; van der Lee et al.,
2019). This might especially be an issue for this
type of dataset, originating from texts that—besides
informing—try to provide engaging texts to read,
as evidenced by the high lexical richness and sen-
tence complexity. Since journalists try to convey
data in diverse ways, reference-based metrics such
as BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), and ROUGE (Lin, 2004)
might be especially ineffective to measure text
quality. Van der Lee et al. (2018), for instance,
found that BLEU scores were near zero for a sim-
ilar dataset, while human evaluation showed the

texts to be of reasonable quality. Recent learning-
based metrics, such as RUSE (Shimanaka et al.,
2018), BertScore (Zhang et al., 2020), MoverScore
(Zhao et al., 2019), and BLEURT (Sellam et al.,
2020) might be more viable options, since they
claim to capture semantic similarity.

However, we discourage using this dataset as a
leaderboard chasing game and recommend using
various types of evaluation methods to evaluate
systems trained on the CACAPO dataset (e.g., eval-
uating the results on the dataset using human and
automatic metrics, and qualitative and quantitative
research methods). Variety in evaluation methods
ensures that the results obtained on this dataset are
put into a broad perspective. This will give valu-
able insights into the systems trained on the dataset,
as well as the characteristics of the dataset itself.

Future work The dataset creation method of this
paper, where texts are collected first, and data
is subsequently manually annotated for each text
(Oraby et al., 2019), also facilitates extensions to
the dataset with relative ease. We make the tools to
do so publicly available, so that anyone interested
can extend the current dataset by annotating a se-
lection of scraped texts that were not used for the
definitive dataset. In future work, we would also
like to extend the dataset to other languages and
other domains (e.g. product reviews, movie descrip-
tions, etc.). Furthermore, we would like to explore
the possibility of BERT-based (Devlin et al., 2019)
Information Extraction to automatically extend the
size of the dataset in a semi-supervised fashion.
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A Examples

Atribute Value
incidentCause nog onbekende oorzaak

unknown causes
victimVehicle personenwagen

passenger car
suspectVehicle vrachtwagen

truck
dateTime omstreeks 15.45 uur

around 3.45 pm
incidentType frontaal met elkaar in botsing

collided head-on

↓
Door nog onbekende oorzaak kwamen een personenwagen en
een vrachtwagen omstreeks 15.45 uur frontaal met elkaar in

botsing.
Due to unknown causes, a passenger car and a truck collided

head-on at around 3.45 pm.

Figure A: Example of a set of attribute-value pairs (top) and
corresponding text (bottom) for the Dutch Incidents domain.

Atribute Value
positionOfPlayer middenvelder

midfielder
assistName Joey Suk

Joey Suk
assistType verlengd

extended
goalName aanvoerder Ars

captain Ars
goalType beheerst binnen schoof

composedly slid it in

↓
Een geblokt schot werd door middenvelder Joey Suk verlengd

tot bij aanvoerder Ars die beheerst binnen schoof.
A blocked shot was extended by midfielder Joey Suk to captain

Ars, who composedly slid it in.

Figure B: Example of a set of attribute-value pairs (top) and
corresponding text (bottom) for the Dutch Sports domain.

Atribute Value
companyName Ctac

Ctac
stockChange daalde

declined
stockChangePercentage 0,5 procent

0,5 procent

↓
Ctac daalde 0,5 procent op de lokale markt.

Ctac declined 0.5 percent on the local market.

Figure C: Example of a set of attribute-value pairs (top) and
corresponding text (bottom) for the Dutch Stocks domain.

Atribute Value
windAmount zwak tot matig

weak to moderate
windDirection oost tot zuidoost

east to southeast

↓
De wind is zwak tot matig en komt uit oost tot zuidoost.

There will be a weak to moderate breeze coming from east to
southeast.

Figure D: Example of a set of attribute-value pairs (top) and
corresponding text (bottom) for the Dutch Weather domain.

Atribute Value
victimNumber several
victimStatus more serious injuries
takenToHospital True
hospitalName UMC

↓
Several with more serious injuries were later transported to

UMC.

Figure E: Example of a set of attribute-value pairs (top) and
corresponding text (bottom) for the English Incidents domain.

Atribute Value
winLossRecord 15 of 19
teamName Milwaukee

↓
But Milwaukee dropped 15 of 19 to begin the regular season’s

final month.

Figure F: Example of a set of attribute-value pairs (top) and
corresponding text (bottom) for the English Sports domain.

Atribute Value
exchangeName Dow
stockChange added
stockPoints 187.86
stockChangePercentage 0.7%

↓
The Dow added 187.86 points, or 0.7%.

Figure G: Example of a set of attribute-value pairs (top) and
corresponding text (bottom) for the English Stocks domain.

Atribute Value
timePoint Overnight
temperatureCelsius 15C

↓
Overnight temperature of 15C.

Figure H: Example of a set of attribute-value pairs (top) and
corresponding text (bottom) for the English Weather domain.



B Baseline Model Parameters

Setting Value

Adam optimizer learning rate 5e-4
Network cell type LSTM
Embedding (+cell) size 50
Batch size 20
Encoder length (max. input attribute-value pairs) 10
Decoder length (max. output tokens) 80
Max. training epochs 20
Training instances reserved for validation 2000

TGen training parameters as reported in (Novikova
et al., 2017): main-sequence-to-sequence model with
attention.

Setting Value

Adam optimizer learning rate 1e-3
Embedding (+cell) size 50
Batch size 20
Training epochs 20
Encoder length (max. input tokens) 80
Training instances reserved for validation 2000

TGen training parameters as reported in (Novikova
et al., 2017): reranker.

Setting Value

Beam size 10
Reranker misfit penalty 100

TGen decoder parameters as reported in (Novikova
et al., 2017).

The parameters are the same as the TGen param-
eters for the E2E dataset (Novikova et al., 2017).
Raw strings are used for training and generation.
Validation is performed on the reserved instances
after each epoch using BLEU. Early stopping is
applied if the top 3 BLEU results do not change for
5 epochs.



C Labels of all data types

Subdomain Data types

Dutch sports assistName, assistType, chanceForName, chanceForNationality, chanceForNumber, chanceForType,
coachName, defendedName, disallowedGoalName, disallowedGoalType, finalScore, formationTeam,
goalName, goalScore, goalType, goalkeeperName, halfTimeScore, hasLostTeam, hasScored,
hasTiedTeam, hasWonTeam, homeAway, injuredName, injuryType, matchDate, matchStreakNumber,
matchStreakType, matchTime, nextMatchDate, nextMatchHomeAway, nextMatchTeam,
numberOfMatchGoals, numberOfMatchesPlayed, numberOfPoints, numberOfSeasonGoals,
playerAge, playerName, playerNationality, positionOfPlayer, redCardName, refereeName,
stadiumPlayed, substituteName, suspendedName, tackleGiverName, tackleRecipientName,
teamName, teamStandings, twiceYellowName

English sports ERA, RBI, atBatNumber, baseNumber, baseReachedNumber, baseStolen, basesRan, batterHitsTries,
batterName, batterScoreNumber, battersFacedNumber, battingAverage, battingLineupNumber,
catchType, catcherName, competitionName, earnedRunsNumber, errorNumber, fielderName,
fielderPosition, finalScore, gameNumber, gameTally, hasLostTeam, hasScored, hasWonTeam,
hitNumber, homeAway, homeRunNumber, injuryType, inningNumber, inningScore, inningsPitched,
isOut, leftOnBase, locationPlayed, managerName, matchDate, matchStreakNumber, matchStreakType,
numberOfStarts, onBaseNumber, outNumber, pitchCount, pitchNumber, pitchResult,
pitchResultNumber, pitchType, pitcherName, pitcherRecord, pitcherSaveRecord, pitchesTotalThrown,
presidentName, retireNumber, runAverage, runNumber, scoreNumber, scoreTally, standingsGames,
startsNumber, stealNumber, strikeNumber, strikeOutNumber, strikeTrajectory, strikingType, teamName,
teamRecord, teamStandings, throwDirection, umpireName, umpireType, unearnedRunsNumber,
walkNumber, winLossRecord, winLossType, winningPercentage

Dutch/English amountNumber, companyName, exchangeName, locationName, moneyAmount, stockChange,
stocks stockChangePercentage, stockPoints, tickerName, timePoint

Dutch/English cloudAmount, cloudChange, cloudType, compassDirection, gustAmount, gustChange, gustVelocity,
weather locationArea, maximumTemperature, minimumTemperature, precipitationAmount, snowAmount,

temperatureCelsius, temperatureChange, temperatureHotCold, timePoint, weatherArea, weatherChange,
weatherFrequency, weatherIntensity, weatherOccurringChance, weatherType, windAmount,
windChange, windDirection, windSpeedBft, windTurning, windType

Dutch incidents dateTime, incidentCause, incidentLocation, incidentType, suspectAddress, suspectAge, suspectAmount,
suspectDescription, suspectGender, suspectStatus, suspectVehicle, victimAddress, victimAge,
victimAmount, victimDescription, victimGender, victimName, victimStatus, victimVehicle

English incidents accidentAddress, accidentDate, hospitalName, numberOfRoundsFired, personnelArrivedTime,
prisonName, shootingNumber, shootingType, suspectAge, suspectAgeGroup, suspectBased,
suspectDescription, suspectGender, suspectHeight, suspectName, suspectNumber, suspectOccupation,
suspectRace, suspectStatus, suspectVehicle, suspectWeapon, suspectWeight, takenToHospital,
victimAge, victimAgeGroup, victimBased, victimGender, victimName, victimNumber,
victimOccupation, victimRace, victimStatus, victimVehicle

Labels of data types used in the CACAPO dataset per
subdomain.


