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Abstract

Canonical morphological segmentation con-
sists of dividing words into their standardized
morphemes. Here, we are interested in ap-
proaches for the task when training data is
limited. We compare model performance in
a simulated low-resource setting for the high-
resource languages German, English, and In-
donesian to experiments on new datasets for
the truly low-resource languages Popoluca and
Tepehua. We explore two new models for
the task, borrowing from the closely related
area of morphological generation: an LSTM
pointer-generator and a sequence-to-sequence
model with hard monotonic attention trained
with imitation learning. We find that, in the
low-resource setting, the novel approaches out-
perform existing ones on all languages by
up to 11.4% accuracy. However, while ac-
curacy in emulated low-resource scenarios is
over 50% for all languages, for the truly low-
resource languages Popoluca and Tepehua, our
best model only obtains 37.4% and 28.4% ac-
curacy, respectively. Thus, we conclude that
canonical segmentation is still a challenging
task for low-resource languages.

1 Introduction

Morphological segmentation denotes the task of
dividing words into their constituting morphemes,
i.e., their smallest meaning-bearing units, and has
been studied extensively in natural language pro-
cessing (NLP) (Ruokolainen et al., 2016). The
most common form of segmentation consists of
separating morphemes at the surface level. How-
ever, this is not always well suited: in fusional
languages, morphemes are merged during word
formation and, thereby, change their surface forms.
Thus, in this paper, we tackle the task of canoni-
cal segmentation (Cotterell et al., 2016b), which
consists of segmenting a word while restoring the
original forms of its morphemes. Considering, e.g.,

profitably profitable-ly

künstlich kunst-lich

penyusup pen-susup

čyuʔmuʔk y-tuʔmuʔk

šwiilakał iš-wiila-kan-łi Tepehua

Surface form
Canonical

segmentation

Popoluca

Indonesian
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English

Figure 1: Canonical segmentation examples for all lan-
guages in our experiments.

the English word collision, its surface segmenta-
tion is collis+ion, while its canonical segmentation
is collide+ion. Figure 1 provides examples for all
five languages we experiment on.

Neural models have shown to perform well
on this task when large amounts of training data
are available (Kann et al., 2016; Ruzsics and
Samardzic, 2017). Nevertheless, datasets with mor-
phological annotations are difficult to obtain, since
they require expert annotators. Furthermore, many
languages with complex morphology are spoken
by a limited number of people or are listed as en-
dangered languages (Mager et al., 2018), which re-
duces the possible annotator pool even more. How-
ever, morphological segmentation is important for
downstream tasks like machine translation (Con-
forti et al., 2018; Vania and Lopez, 2017), depen-
dency parsing (Seeker and Çetinoğlu, 2015; Vania
et al., 2018), or semantic role labeling (Sahin and
Steedman, 2018). Moreover, high performance on
these tasks can yield more language independent
NLP models (Gerz et al., 2018).

Here, we focus on low-resource canonical seg-
mentation. We propose two new models for the
task, which have recently been successfully applied
to a related morphological generation task called
morphological inflection. The approaches we in-
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vestigate are (i) an LSTM pointer-generator model
(Sharma et al., 2018a), and (ii) a neural transducer
trained with imitation learning (IL; Makarov and
Clematide, 2018a). Since both canonical segmen-
tation and morphological inflection are character-
level string transduction tasks, we hypothesize that
models which can learn one from limited data, will
also be able to do so for the other.

We experiment on three benchmark datasets in
German, English, and Indonesian, but simulate a
low-resource scenario by reducing the number of
training examples. We further evaluate our models
on datasets for two truly low-resource languages:
Popoluca and Tepehua. We find that our new mod-
els indeed outperform previous approaches on all
languages. For additional insight, we also evaluate
the performance of all models for varying amounts
of training data from the high-resource languages
and find that the neural-transducer with imitation
learning outperforms all other models in all but one
setting with up to 600 training examples. Using
the entire training set for English, German, and
Indonesian, the state-of-the-art LSTM sequence-
to-sequence model performs best. However, the
difference to our proposed models is below 3.3%
accuracy for all languages and models.

Contributions. (i) Inspired by recent advances
in the area of morphological generation, we pro-
pose two new models for the task of low-resource
canonical segmentation, which outperform all base-
lines. (ii) We introduce two canonical segmenta-
tion datasets for the truly low-resource languages
Popoluca and Tepehua. (iii) We compare all models
under multiple different conditions, highlighting
their strengths and shortcomings, and conduct an
analysis of the errors made by all neural models.

2 Related Work

The task of morphological segmentation was in-
troduced by Harris (1951). Most work has con-
sidered the surface segmentation task, for which
unsupervised methods like LINGUISTICA (Gold-
smith, 2001) and MORFESSOR (Creutz and Lagus,
2002, 2007; Poon et al., 2009) played an important
role. The latter was further extended to a semi-
supervised version (Kohonen et al., 2010; Grönroos
et al., 2014).

Over the last years, supervised methods have at-
tracted more attention: Ruokolainen et al. (2013)
cast the task as a sequence labeling problem using
conditional random fields (CRFs; Lafferty et al.,

2001). A similar approach was suggested by Wang
et al. (2016), who employed a long short-term mem-
ory network (LSTM; Hochreiter and Schmidhuber,
1997) for tagging. Semi-Markov CRFs were also
proposed (Cotterell et al., 2015). Kann et al. (2018)
modeled the task as a sequence-to-sequence prob-
lem. Supervised methods for surface segmenta-
tion were shown to perform acceptably even in
the low-resource setting (Grönroos et al., 2019).
Recent work also included context to improve mor-
phological disambiguation (Can and Manandhar,
2018; Sakakini et al., 2017). Yang et al. (2019)
proposed a pointer network to find surface segmen-
tation boundaries.

For fusional languages, surface segmentation is
not very effective. Therefore, restoring morphemes
to their canonical form was previously discussed
in linguistics (Kay, 1977) as well as in the NLP
literature. Previous approaches include unsuper-
vised (Naradowsky and Goldwater, 2009), as well
as joint models for segmentation and transduction
(Cotterell et al., 2016b) and neural encoder-decoder
models (Kann et al., 2016; Ruzsics and Samardzic,
2017). However, up to now, supervised models
have only been explored in the high-resource set-
ting. We aim at closing this gap.

For low-resource morphological segmentation,
rule-based approaches have been used frequently,
since they do not need large amounts of data. They
have been developed, e.g., with finite state trans-
ducer (FST) tools like FOMA (Hulden, 2009) or
HFST (Lindén et al., 2011). However, this kind of
system requires both time and linguistic knowledge.
Our aim is to explore data-driven approaches for
the low-resource setting in order to overcome this
limitation.

In recent years, the area of morphological gener-
ation has experienced substantial progress, with a
variety of methods that can be used for the canon-
ical segmentation task. Kann et al. (2016) used a
sequence-to-sequence model to inflect a word given
a set of morphological tags. Sharma et al. (2018a)
proposed a pointer-generator model, which was
more suitable for the low-resource setting. Aha-
roni and Goldberg (2017) proposed a neural trans-
ducer with hard monotonic attention. Makarov et al.
(2017) extended this approach and added a copy
operation, and Makarov and Clematide (2018a)
proposed imitation learning (Daumé et al., 2009)
for training it. Here, we explore the applicability of
the models by Sharma et al. (2018a) and Makarov
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ENG DEU IND POQ TTP

ly 7.53 er 15.66 men 8.65 y 6.08 ya 8.58
ness 3.41 in 10.38 nya 8.29 ∅ 6.08 łi 6.27
er 2.99 ung 8.14 an 7.18 n 3.98 ka 4.46
ion 1.87 lich 4.37 kan 6.61 ny 3.56 ta 4.29
y 1.50 keit 3.96 di 5.31 k 3.35 ti 3.80
ity 1.24 ig 3.78 pen 4.14 p 2.94 ik 2.81
ation 0.99 los 1.23 ber 2.81 t+k 2.52 ni 2.64
un 0.88 chen 1.16 i 2.45 ky 2.31 ča 2.31
ic 0.85 bar 1.13 ter 1.91 wat 2.10 la 1.82
al 0.81 ver 0.81 per 1.25 aP 2.10 maa 1.82
ist 0.76 un 0.77 se 0.72 taP 1.89 kin 1.82
able 0.74 e 0.49 ke 0.71 Peš 1.26 waa 1.82

Table 1: Relative frequencies of the 12 most com-
mon morphemes for each language; ENG=English;
DEU=German; IND=Indonesian; POQ=Popoluca;
TTP=Tepehua.

and Clematide (2018a) to low-resource canonical
segmentation.

3 Datasets for Popoluca and Tepehua

We release two new datasets for low-resource
canonical segmentation in Popoluca and Tepehua1.
In this section, we briefly introduce the languages,
before describing our datasets. We use these two
languages to shed light on polysynthetic languages
that also exhibit fusional phenomena. The high-
resource datasets introduced by (Cotterell et al.,
2016a) cover fusional (German), analytic (English),
and agglutinative (Indonesian) languages.

3.1 Languages

In addition to experimenting on high-resource
datasets for English, German and Indonesian (Cot-
terell et al., 2016b), we introduce datasets for two
low-resource languages from Mexico: Popoluca
and Tepehua. This enables us to evaluate our mod-
els in real low-resource settings.

Popoluca. Popoluca of Texistepec (language
code: POQ2) is part of the Mixe-Zoquean fam-
ily. Its morphology is classified as polysynthetic,
and it mostly follows a verb, subject, object (VSO)
word order (Dryer and Haspelmath, 2013). This
language is almost extinct with only one native
speaker alive reported in 2005 (Gordon Jr, 2005).
However, attempts for language revival have been
reported (INEGI, 2008). Efforts made for language
revitalization can benefit from advances in NLP.

1Te dataset is available at http://turing.iimas.
unam.mx/wix/canseg

2We use the languages codes defined in the ISO 639-3
standard.

>3Morph. Surf. Canon. NoSeg. M./W. Ch./W.

ENG 00.01 36.40 22.83 41.37 01.60 08.18
DEU 01.86 46.07 53.86 00.00 02.20 12.48
IND 05.57 46.21 23.66 30.14 02.07 08.65
POQ 12.12 23.74 56.57 19.70 02.41 06.78
TTP 32.00 21.50 63.00 15.50 03.03 08.62

Table 2: Statistics for all five canonical segmenta-
tion datasets. Percentages of words with more than 3
morphemes (>3 Morph.), surface segmentation (Surf.),
canonical segmentation (Canon.), and without segmen-
tation (NoSeg.), as well as the average number of mor-
phemes per word (M./W.) and characters per word
(Ch./W.).

Thus, the creation and development of accurate
models for those languages is of high importance.

Here we show an example of canonical segmen-
tation in Popoluca, together with its English gloss.
The plus symbol is part of the alphabet of the lan-
guage. We use a ‘-’ as morpheme delimiter.

kki:mba: → ky-k+:m-ba:
You are small

Tepehua. Tepehua (language code: TPP) be-
longs to the Totonacan language family. It is spo-
ken in three Mexican regions: in the northeastern
part of the state of Hidalgo (around 3000 speakers),
in the villages of Pisaflores (around 4000 speak-
ers), and in Tlachichilco in the state of Veracruz
(around 3000 speakers) (Gordon Jr, 2005). It is
also polysynthetic. Tepehua permits free word or-
der, but has a preference for a subject, verb, ob-
ject (SVO) configuration (Dryer and Haspelmath,
2013).

An example for canonical segmentation is

iklakadı́kdi → ik-laka-tikti
I am small

The variant of the language used in our dataset
is the one spoken in Pisaflores, Veracruz.

3.2 Datasets
We collect words for our datasets from two books
belonging to the Archive of Indigenous Languages
(ALI-Colmex) of the College of Mexico (Colegio
de México). For Popoluca we used the book by
Wichmann (2007) and for Tepehua that by MacKay
and Trechsel (2010). We include segmentable as
well as non-segmentable words in order to avoid
oversegmentation by our systems. For both lan-
guages a set of Spanish sentences are used to elicit
the data. This set of sentences is the same across the
entire ALI-Colmex collection. For each language

http://turing.iimas.unam.mx/wix/canseg
http://turing.iimas.unam.mx/wix/canseg
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the authors of the books asked native speakers to
translate the sentences into the respective languages
(elicited data). Afterwards, they performed a gloss-
ing of the translated text. For more details we refer
the reader to the original books.

In Table 2, we show statistics for all five datasets
used in this paper. Importantly, the German dataset
only contains multi-morpheme words. Addition-
ally, we observe that most of the Indonesian words
only require surface segmentation, while English is
the language with the highest ratio of words that do
not require any segmentation. On the other hand,
Popoluca and Tepehua have the highest proportion
of words that require both splitting and restoration
of the canonical forms. Moreover, both languages
have a high amount of words that contain more than
3 morphemes per word, and also have the highest
morphemes-per-word rate. Adding to these facts,
the small amount of data available for these lan-
guages makes morphological segmentation even
harder. To get a better understanding of the under-
lying morphemes seen in each language, we extract
the 15 most common ones for each dataset. These
morphemes, together with their relative frequency
in our datasets, are shown in Table 1.

4 Models

Inspired by recent successes of two models for low-
resource morphological inflection, we propose to
apply these architectures to canonical segmenta-
tion with limited training data. In this section, we
introduce the models.

4.1 Pointer-Generator Network

Motivation. The first model we apply to low-
resource canonical segmentation is a pointer-
generator network (See et al., 2017), i.e., a
sequence-to-sequence model with a mechanism to
copy input elements over to the output. Our intu-
ition is that this should make the learning problem
easier and help in settings with limited training
data. The pointer-generator network can be consid-
ered a hybrid between an attention-based sequence-
to-sequence model (Bahdanau et al., 2015) and a
pointer network (Vinyals et al., 2015).

Model description. Our pointer-generator net-
work consists of a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) encoder and a unidi-
rectional LSTM decoder with an attention mecha-
nism. We cast the task of canonical segmentation

as a character-based sequence-to-sequence prob-
lem, with the characters of the original word as the
input and the characters of the restored morphemes
in combination with segment boundary markers as
the output. Both our encoder and decoder operate
on the character level.

The pointer-generator network differs from the
standard sequence-to-sequence architecture in that
the decoder calculates a probability for copying an
element from the input over to the output instead of
generating. Here, we follow Sharma et al. (2018b)
and use two separate encoders: one for the lemma
and one for the morphological tags. The decoder
then computes the probability distribution of the
output at each time step as a weighted sum of the
probability distribution over the output vocabulary
and the attention distribution over the input charac-
ters. The weights can be seen as the probability to
generate or copy, respectively, and are computed
by a feedforward network. For details, we refer the
reader to Sharma et al. (2018b).

Hyperparameters. All encoder and decoder hid-
den states are 100-dimensional, and our embed-
dings are of size 100. For training, we use Adam
(Kingma and Ba, 2014) with a learning rate of
0.001 and a mini-batch size of 32. To avoid over-
fitting, we use dropout (Srivastava et al., 2014)
with a coefficient of 0.3 for the high-resource set-
ting and 0.5 for the low-resource setting. We train
our model for 100 and 300 epochs and use early
stopping with a patience of 10 and 100 for the high-
resource and the low-resource setting, respectively.

4.2 Neural Transducer with Imitation
Learning

Motivation. Hard monotonic attention networks
(Aharoni and Goldberg, 2017) have shown to per-
form well on morphological generation in the low-
resource setting. These systems use a nearly-
monotonic alignment between the source char-
acters and the output characters. For our sec-
ond model, we employ the variant proposed by
Makarov and Clematide (2018c), which makes use
of imitation learning for end-to-end training and,
thus, avoids error propagation.

Model description. This model is a sequence-
to-sequence model with hard monotonic attention
(Aharoni and Goldberg, 2017), which transduces
an input sequence of characters into an output se-
quence by performing edit operations. Follow-
ing Makarov and Clematide (2018b), it can per-
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form three operations: insertion, deletion and copy.
However, instead of using maximum likelihood
estimation (MLE), training is done with imitation
learning. The idea is to train a model to imitate an
expert policy that maps the training configurations
to a set of optimal actions. We aim to minimize the
sequence-level loss and an action level loss.

The training is composed of two steps: a roll-in
and a roll-out stage. In the roll-in stage, the model
gather actions by sampling from the expert policy.
This process returns a set of decoder outputs called
configurations. For the roll-out stage: a sequence-
level loss is computed for each valid action per
configuration. For that, the action is executed and
is compared to the optimal action sequence of the
expert. This loss is defined in terms of Levenshtein
distance (Levenshtein, 1966) between the predic-
tion and the target and the cost of the actions. The
cost function uses the information from a charac-
ter aligner. After calculating the sentence-level
loss, this is fed into an action-level loss. This loss
expresses how much a certain action suffers rela-
tive to the optimal action under the current policy.
This is done by minimizing the negative marginal
log-likelihood of all optimal actions (Makarov and
Clematide, 2018b).

Hyperparameters. For the encoder and the de-
coder of this model, we use one layer with a 200-
dimensional size, with a dropout of 0.5. For opti-
mization we use ADADELTA (Zeiler, 2012) with
a learning rate of 0.1. As the RNN unit, we use
an LSTM. We train the model for 30 epochs, with
a patience of 10 epochs. For IL training, we use
an inverse sigmoid, and a decay rate of 12. For
decoding, we employ beam search with a beam of
width 4.

5 Experiments

We now describe the experiments we conduct to
explore the performance of our models both in the
high-resource and in the low-resource setting.

5.1 Data
The canonical segmentation datasets for English
(ENG), German (DEU) and Indonesian (IND) by
Cotterell et al. (2016b) each consist of 8000 train-
ing, 1000 development, and 1000 test examples.
We consider the complete training set to be high-
resource. The datasets feature a splitting into 10
folds for cross-validation. For our low-resource
experiments, we randomly take a subset of words

from each training fold, but keep the development
and test sets unchanged.

The high-resource datasets cover three lan-
guages: English, German, and Indonesian. English
is an analytic language from the Indo-European
family (Konig and Van der Auwera, 2013), German
exhibits fusional typology (Hawkins, 2015), while
Indonesian is an agglutinative language whose mor-
phology involves the use of affixation, reduplica-
tion and cliticization (Hiroki Nomoto and Bond,
2018).

We additionally experiment with two polysyn-
thetic low-resource languages: Tepehua and
Popoluca (cf. Section 2). As those datasets are
small (900 words for each language), we divide the
datasets into 9 folds, each containing 100 training,
100 development, and 700 test examples.

5.2 Baselines

We compare the neural-transducer with imitation-
learning (IL) and the pointer-generator network
(PGNet) to three strong baselines, including the
current state of the art for the canonical segmenta-
tion task.

Encoder-Decoder (s2s). Our first baseline is a
character-based encoder-decoder recurrent neural
network (RNN) architecture with attention as pro-
posed by Kann et al. (2016). It defines (in combi-
nation with a reranker which we omit here since it
is orthogonal to our work) the state of the art on the
high-resource datasets. To perform experiments
in the low-resource setting, we re-implement this
model using OpenNMT (Klein et al., 2017). The
hyperparameters suggested by Kann et al. (2016)
are as follows: the RNNs of the encoder and de-
coder have 100 hidden units each; the embedding
size is 300. For optimization we use ADADELTA
(Zeiler, 2012) with a minibatch size of 20.

Semi-Markov CRF (semiCRF). Our first non-
neural baseline is the ChipMunk (Cotterell et al.,
2015) implementation of a semi-Markov CRF
(Sarawagi and Cohen, 2005). Although the system
is able to make use of additional complementary
information like morphological tags or dictionaries,
we decide to not include those, in order to make
our results comparable across all languages and
systems.

Joint log-linear model (joint) As a second
non-neural system we use a log-linear model which
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English German Indonesian

Acc. ED F1 Acc. ED F1 Acc. ED F1

SemiCRF 64.7 64.3 76.6 41.9 108.3 74.1 70.4 46.3 84.3
joint 72.0 98.0 76.0 59.0 101.0 76.0 90.0 15.0 80.0
s2s �78.0 41.2 88.4 �77.1 47.8 89.3 �94.3 7.6 97.9
PGNet 77.5 42.4 88.5 74.8 52.1 88.2 92.9 10.0 97.5
IL 76.7 42.9 87.2 73.8 52.3 87.2 93.4 8.4 97.6

Table 3: Results for semiCRF, joint, s2s, PGNet, and IL for the high-resource setting of English, German
and Indonesian. Lower scores in the ED columns are better. For accuracy, � indicates statistical significance at
p < .01.

jointly segments and generates underlying represen-
tations of the input words (Cotterell et al., 2016b).
For segmentation it uses the semiCRF previously
described, and for transduction of the underlying
forms it uses a probabilistic final state transducer
(Cotterell et al., 2014).

5.3 Training Details

We choose the hyperparameters for all models fol-
lowing the mentioned previous work. All neural
models and the semiCRF were trained on a server
with 2 Intel(R) Xeon(R) CPU v4@ 2.20GHz, with
4 Nvidia GTX 1080ti graphic cards. To train the
joint log-linear model a MacBook Pro 2009 laptop
was used. Links to the repositories we use are listed
in the complementary material.

5.4 Metrics

For evaluation, we use three metrics. The first
one is accuracy, i.e., the proportion of entirely
correctly segmented words, to get a better under-
standing of partially right segmentation. To get
more information about subword-level errors, we
also employ edit distance on the character level.
This is particularly useful to penalize big mistakes
in a single word. We also use F1 score on the
morpheme level, to measure the overlap between
morphemes. Precision corresponds to the propor-
tion of morphemes in the prediction that occur in
the gold standard, and recall is the proportion of
morphemes in gold that appear in the system’s pre-
diction. This will ensure that morphemes that are
predicted without appearing in the gold standard
are penalized, as well morphemes that are in the
gold standard but are omitted in the prediction.

5.5 Results

Low-resource simulation. Figure 2 shows the
accuracy of all systems for different low-resource
training set sizes (100, 200, 300, 400, 500 and

600 examples) for English, German, and Indone-
sian. To ensure statistical significance we use Mc-
Nemar’s test (McNemar, 1947) for all accuracy
results (Tables 3 and 4, Figure 2) comparing the
best and the second best systems. All results are
significant at p < 0.01. The scores of all sys-
tems vary across languages. However, IL con-
sistently is among the two best systems in terms
of accuracy in all settings. For 100 training ex-
amples IL is the second-best performing system
with 50.99% for English, just behind the semiCRF
with 52.87%. For German 51.49% IL slightly out-
performs Joint (51.33%) and obtains the best
score for Indonesian with 61.14%, where the sec-
ond best system is semiCRF (58.82%). Moreover,
from 300 examples up to 600, IL strongly out-
performs all other systems, including non-neural
ones.

If we compare the performance of our two pro-
posed systems with s2s, PGNet strongly outper-
forms s2swith improvements of 22.27%, 17.84%,
and 25.66% absolute accuracy for English, Ger-
man, and Indonesian, respectively, in the setting
with 100 training examples; while IL have even
bigger gains with improvements of 30.65%, 32.1%
and 35.73% of accuracy respectively.

Looking on the learning curves for each model
for increasing training set sizes, we can see that
both proposed systems show monotonically in-
creasing performance: they take advantage of
more data well, but still achieve decent perfor-
mance in the low-resource setting, even outper-
forming all non-neural systems in some settings.
On the contrary, the non-neural models joint
and semiCRF have in many cases a good start, but
only benefit to a limited extends from additional
data. A table listing all individual results for this
experiment is included in the supplementary mate-
rial.
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Tepehua Popoluca

Model Acc. ED F1 Acc. ED F1

SemiCRF 21.9 285.3 35.9 26.0 215.0 41.4
joint 11.2 335.4 29.5 14.6 393.6 36.8
s2s 4.1 532.4 7.7 13.2 309.4 23.3
PGNet 17.2 321.7 29.3 27.0 211.0 42.5
IL �28.4 242.6 44.0 �37.4 158.8 54.7

Table 4: Results for the low-resource languages Popoluca and Tepehua. For accuracy, � indicates statistical signif-
icance at p < .01.
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seq2seq
semiCRF
PGNet
Joint
IL

Figure 2: Accuracy for different simulated low-resource settings for our high-resource languages.

Low-resource languages. Results for Popoluca
and Tepehua are shown in Table 4 and confirm most
of the tendencies seen in our low-resource simula-
tion experiment. s2s barely predicts any correct
segmentation for Tepehua, and only obtains 4.14%
absolute accuracy and 13.19 F1 score. Similarly,
for Popoluca, s2s reaches only 13.19% accuracy.
The performance of IL is consistently better on all
metrics, with substantial gains for Tepehua of 6.5%
accuracy over the closest system (semiCRF) and
10.4% accuracy over PGNet.

The performance of PGNet is consistently better
than that of s2s, with gains of 13.03% and 13.77%
accuracy for Tepehua and Popoluca, respectively.
joint surprisingly shows a low performance for
our two low-resource languages, obtaining a 17.2%
lower accuracy than the best model for Tepehua
(IL), and a 22.8% lower accuracy than the best
system for Popoluca (IL).

Overall, all systems perform notably worse for
Tepehua and Popoluca than for the high-resource
languages. This could be due to their high morpho-
logical complexity, as shown in Table 2.

High-resource setting. Table 3 shows results for
IL, PGNet, s2s, joint, and semiCRF for
the high-resource experiment. The s2s model
gets the best results in this setting with 78.02%,

77.06%, and 94.30% accuracy for English, Ger-
man, and Indonesian, respectively. However, it
only obtains a slightly higher accuracy than PGNet
and the differences in F1 scores are similarly small.
Overall, the pointer-generator network achieves
results that are comparable with the state of the
art in the high-resource setting. In contrast to the
good performance for low-resource settings, IL
under-performs on all metrics compared to s2s
and PGNet. The joint model is the best non-
neural system and performs clearly worse than both
neural systems. Compared to PGNet, its accuracy
is 5.54% lower for English, 15.80% lower for Ger-
man, and 2.90% lower for Indonesian. semiCRF
performs even worse.

6 Error Analysis

To get a better understanding of the results obtained
with our neural models, we perform an error anal-
ysis on the output for the development sets of all
folds. By manual inspection, we identify five not
mutually exclusive types of errors: Oversegmen-
tation (Overseg.) arises when the number of mor-
pheme boundaries in the prediction is higher than
in the gold standard annotation. Undersegmen-
tation (Underseg.) occurs when the number of
morpheme boundaries is lower than in the gold
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Oversegmentation
Input internationalisierung
Gold internationale isier ung
Error internationale is i er ung

Description The morpheme isier is seg-
mented wrongly into three
morphemes.

Undersegmentation
Input internationalisierung
Gold internationale isier ung
Error internationale isieung

Description The morphemes isier and
ung are lacking of a segmen-
tation boundary.

Restoration Error
Input internationalisierung
Gold internationale isier ung
Error international isier ung

Description The system did not perform
the needed restoration for the
stem internationale.

Overrestoration
Input internationalisierung
Gold internationale isier ung
Error internationaler isierer ung

Description The systems perfomed a
restoration on a morpheme
that is not supposed to be re-
stored.

Wrong segmentation
Input internationalisierung
Gold internationale isier ung
Error internationale isi erung

Description The segmentation was done
with the exact number of mor-
phemes as in gold, however,
the segmentation points are
wrongly placed. In this error
count all instances that do not
match the exact segmentation
boundaries.

Table 5: Examples of error types. Wrong parts are
marked in italics.

standard. Restoration error (Res.) occurs when
the prediction does not match the gold annotation,
and the predicted word without boundaries does
not match the input. These are errors that occur
to words that undergo orthographic changes dur-
ing word-formation. Overrestoration (Overres.)

refers to outputs with errors where the correct out-
put needs only segmentation and a copy of the input
to the output. Wrong segmentation (Wrong seg.)
arises when the morpheme boundaries in the pre-
diction are not the same as in gold. From each
segmented word, we extract the indices within the
word where the segmentation is performed. If the
segmentation indices from the gold standard and
the prediction are not equal, it counts as this error.

Table 6 shows the percentage of errors in all
languages for both experimental settings (100 ex-
amples in the low-resource setting). For the high-
resource experiments, the results for oversegmenta-
tion and undersegmentation errors are mixed: for
English, s2s avoids to generate too many segmen-
tation boundaries, but this also has the drawback of
not segmenting sufficient when it is needed. The
opposite happens for German, where IL performs
better as well, with respect to oversegmentation
but fails regarding undersegmentation. PGNet
shows no strong wins or problems regarding these
errors, except for English, where it performs better
for undersegmentation. s2s performs better for
restoration errors with the exception of English,
where again PGNet improves. With respect to
oversegmentation errors, IL wins on all languages
when compared to the other neural systems. As
Indonesian has a relatively regular morphology,
all error types are much less frequent for this lan-
guage. If we only consider the exact segmenta-
tion point prediction, s2s performs better for all
languages. However, the differences between the
observed error rates are relatively small between
s2s and PGNet models. Overall, wrong segmen-
tation errors are the most common error type for
all languages in the high-resource setting.

In the low-resources experiments, IL excels over
all other models for oversegmentation and over-
restoration, and for all languages with except to
Indonesian for wrong segmentation errors. This
low error rate explains the important gains that this
model shows for low-resource languages. PGNet
shows, however, better performance avoiding un-
dersegmentation errors in all languages. It also per-
forms better for Popoluca and Tepehua for restora-
tion errors, while s2s has the lowest restoration
errors for English, German, and Indonesian.

Finally, we also perform an error analysis of
joint (cf. supplementary material). In our low-
resource simulation experiments, we notice a sur-
prisingly good performance of joint for German.
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Overseg. Underseg. Res. Overres. Wrong seg.

IL PGNet s2s IL PGNet s2s IL PGNet s2s IL PGNet s2s IL PGNet s2s

ENG 5.54 05.60 05.28 08.13 06.58 07.37 08.04 05.86 06.28 02.34 05.30 04.00 21.67 19.68 17.01
High DEU 4.17 04.42 04.88 09.30 08.11 07.02 09.24 07.42 06.94 06.08 07.55 06.40 25.46 23.65 20.49

IND 2.26 02.52 01.91 01.76 01.67 01.50 00.46 00.52 00.45 00.58 01.22 00.79 05.16 05.29 03.26

ENG 5.84 07.52 11.97 26.06 18.82 21.75 18.94 10.39 04.96 02.56 20.48 49.43 46.92 48.35 70.19
DEU 1.40 04.11 07.79 17.56 14.83 15.70 32.01 16.26 07.81 03.94 21.88 33.93 41.66 51.52 71.78

Low IND 10.94 11.03 15.47 15.24 10.61 14.00 4.91 03.19 01.46 02.96 19.90 50.00 34.64 34.25 36.16
TPP 15.86 27.75 34.45 42.43 07.56 23.42 32.16 07.58 14.10 03.80 25.04 44.20 69.52 73.39 86.34
POQ 15.86 21.88 26.10 28.43 10.22 25.18 22.86 10.29 17.68 07.86 22.17 49.42 55.71 57.54 76.81

Table 6: Error types found in the development set. The high resource configuration includes three languages, while
the low-resourced setting refers to model performance using 100 training examples. This error analysis was done
for all five languages.

The data for this language is special since all words
contained in the set are segmentable. We find
that joint has no undersegmentation errors at all.
Also, it makes very few copy errors (9.5%, com-
pared to 21.7% of PGNet). For our new datasets,
this model obtains a high rate of wrong segmenta-
tion (88.87% for Popoluca and 91.57% for Tepe-
hua). It further seems to not easily be able to decide
which words should or should not be segmented.
This is shown by the high undersegmentation rate
(50.14% for Popoluca and 62.43% for Tepehua).
Thus, the low performance of joint on those lan-
guages can be explained by this error type and the
high morphemes-per-word rate of those languages
as shown in Table 2.

7 Conclusion

We proposed two new models for the task of canon-
ical segmentation in the low-resource setting: an
LSTM pointer-generator model and a neural trans-
ducer trained with imitation learning. We evaluated
the performance of both models against multiple
state-of-the-art baselines on five languages of dif-
ferent morphological typology: English, German,
Indonesian, Tepehua, and Popoluca. In emulated
low-resource settings with up to 600 training ex-
amples, our best proposed model outperformed all
baselines in all but one setting. We obtained a
similar picture for experiments on the truly low-
resource languages Popoluca and Tepehua: our
best approach outperformed the best baseline by
11.4% and 6.5% accuracy. For large training sets,
our systems performed close to the state of the art.
However, we find a large gap between the emu-
lated and the real low-resource scenarios: while
accuracy is above 50% for all high-resource lan-
guages even with reduced amounts of training data,

for Popoluca and Tepehua, our best model only
obtains 37.4% and 28.4% accuracy, respectively.
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Centro de Estudios Lingüı́sticos y Literarios.

Manuel Mager, Ximena Gutierrez-Vasques, Gerardo
Sierra, and Ivan Meza-Ruiz. 2018. Challenges of
language technologies for the indigenous languages
of the americas. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 55–69. ACL.

Peter Makarov and Simon Clematide. 2018a. Imita-
tion learning for neural morphological string trans-
duction. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2877–2882, Brussels, Belgium. Association
for Computational Linguistics.

Peter Makarov and Simon Clematide. 2018b. Imita-
tion learning for neural morphological string trans-
duction. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2877–2882.

Peter Makarov and Simon Clematide. 2018c. Neu-
ral transition-based string transduction for limited-
resource setting in morphology. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 83–93, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

Peter Makarov, Tatyana Ruzsics, and Simon Clematide.
2017. Align and copy: Uzh at sigmorphon 2017
shared task for morphological reinflection. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 49–57.

Quinn McNemar. 1947. Note on the sampling error
of the difference between correlated proportions or
percentages. Psychometrika, 12(2):153–157.

Jason Naradowsky and Sharon Goldwater. 2009. Im-
proving morphology induction by learning spelling
rules. In Twenty-first International Joint Conference
on Artificial Intelligence.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In NAACL-HLT, pages 209–
217. Association for Computational Linguistics.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-
Arne Grönroos, Mikko Kurimo, and Sami Virpioja.
2016. A comparative study of minimally supervised
morphological segmentation. Computational Lin-
guistics, 42(1):91–120.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2013. Supervised morpholog-
ical segmentation in a low-resource learning setting
using conditional random fields. In CoNLL, pages
29–37.

Tatyana Ruzsics and Tanja Samardzic. 2017. Neu-
ral sequence-to-sequence learning of internal word
structure. In Proceedings of the 21st Conference on
Computational Natural Language Learning (CoNLL
2017), pages 184–194.

Gozde Gul Sahin and Mark Steedman. 2018.
Character-level models versus morphology in
semantic role labeling. In ACL, volume 1, pages
386–396.

Tarek Sakakini, Suma Bhat, and Pramod Viswanath.
2017. Morse: Semantic-ally drive-n morpheme
segment-er. In ACL, pages 552–561. ACL.

Sunita Sarawagi and William W Cohen. 2005. Semi-
markov conditional random fields for information
extraction. In Advances in neural information pro-
cessing systems, pages 1185–1192.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.
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A Appendices

semiCRF joint s2s PGNet IL

DS Lang. Acc. ED F1 Acc. ED F1 Acc. ED F1 Acc. ED F1 Acc. ED F1

EN 52.87 80.80 61.27 48.76 88.32 64.45 20.34 232.07 44.35 44.0 118.53 59.28 50.99 88.21 62.47
100 GR 35.12 131.78 61.75 51.33 109.08 69.07 19.39 283.53 60.11 39.29 140.17 69.99 51.49 94.44 74.29

ID 58.82 68.41 71.44 52.21 95.13 70.03 25.41 207.57 68.7 53.41 86.16 78.58 61.14 56.56 79.86
EN 56.42 75.26 66.91 52.32 85.37 70.05 40.34 137.98 61.74 53.0 92.57 69.47 57.26 79.26 70.08

200 DE 36.34 124.36 65.08 55.27 102.61 71.22 41.2 155.71 72.35 48.82 109.28 75.39 54.90 88.04 76.94
ID 60.96 62.16 75.51 57.00 89.34 72.98 55.58 97.97 82.62 67.57 54.97 85.92 71.38 39.89 86.05
EN 57.30 73.37 68.50 55.67 81.39 72.23 50.27 107.28 68.35 56.54 85.81 72.87 61.08 71.67 73.72

300 DE 38.10 118.48 68.28 56.51 101.18 71.85 49.94 118.36 76.73 52.91 97.17 77.78 58.82 79.78 79.16
ID 62.68 58.48 77.92 59.22 82.89 75.23 68.09 62.39 87.29 73.74 42.84 88.87 76.12 32.06 88.92
EN 58.54 71.78 69.78 58.08 74.79 74.35 55.10 92.78 72.11 59.58 79.63 75.68 63.14 68.32 76.35

400 DE 38.27 116.31 69.11 57.17 101.23 65.59 55.14 99.11 79.22 55.16 92.99 78.81 60.37 77.61 80.15
ID 63.27 56.52 79.39 63.92 56.12 79.67 74.18 48.39 89.73 75.69 39.29 89.88 79.32 27.31 90.80
EN 59.06 70.87 69.97 57.73 74.21 73.71 60.19 83.62 76.02 62.38 74.47 77.45 64.88 65.20 77.70

500 DE 38.72 113.84 70.08 58.53 99.16 73.00 57.84 90.63 80.66 58.78 85.44 80.20 62.37 73.11 80.87
ID 63.93 55.36 79.75 66.01 52.42 78.14 78.43 39.58 91.49 78.17 34.76 91.15 81.16 25.16 91.80
EN 59.79 69.96 71.05 59.51 68.27 73.71 61.72 77.06 76.73 63.78 71.02 78.62 66.67 61.46 79.37

600 DE 38.76 113.71 69.94 59.76 93.21 74.00 59.46 87.29 81.03 59.09 84.32 80.40 63.12 71.11 81.41
ID 63.96 55.27 79.65 70.56 50.45 81.92 80.14 32.93 92.23 80.43 30.59 92.36 81.62 24.18 92.15

Table 7: Performance of all systems for increasing
training set sizes; DS=dataset size.
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Overseg. Underseg. Res. Overres. Wrong seg.

English 0.4 21.3 12.0 18.8 71.0
German 0.0 21.7 27.9 9.5 54.9

Indonesian 11.3 41.5 11.5 17.0 63.1
Tepehua 0.4 50.1 9.2 31.2 88.8
Popoluca 13.4 62.4 3.8 26.7 91.5

Table 8: Error types found in the development set for the Joint model.

System Link
semiCRF http://cistern.cis.lmu.de/chipmunk/
Joint https://github.com/ryancotterell/treeseg
s2s https://opennmt.net/

PGNet https://github.com/abhishek0318/conll-sigmorphon-2018
IL https://github.com/ZurichNLP/emnlp2018-imitation-learning-for-neural-morphology

Table 9: Links to all system used in this research

http://cistern.cis.lmu.de/chipmunk/
https://github.com/ryancotterell/treeseg
https://opennmt.net/
https://github.com/abhishek0318/conll-sigmorphon-2018
https://github.com/ZurichNLP/emnlp2018-imitation-learning-for-neural-morphology

