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Abstract

Advances in Question Answering (QA) research require additional datasets for new domains,
languages, and types of questions, as well as for performance increases. Human creation of a
QA dataset like SQuAD, however, is expensive. As an alternative, an unsupervised QA approach
has been proposed so that QA training data can be generated automatically. However, the perfor-
mance of unsupervised QA is much lower than that of supervised QA models. We identify two
anomalies in the automatically generated questions and propose how they can be mitigated. We
show our approach helps improve unsupervised QA significantly across a number of QA tasks.

1 Introduction

Machine Reading Question Answering (MRQA) is a popular NLP task that attempts to answer ques-
tions from associated texts. A popular challenge is SQuAD (Rajpurkar et al., 2016), which has 100K
〈context, answer, question〉 triples created by humans, and other challenging tasks and datasets have been
created. However, it is costly to create a dataset for a new QA task or expand an existing one.

Context Generated Question

... Montecarlo Automobile began manufacturing its first
street legal GT car in 1989 ...

How much does manufacturing its street legal GT car
in 1989 ... ?

... it is hot in the summer and freezing in the winter ... When is it hot in the summer and freezing?

Table 1: A copy-type question (green) and an unanswerable question (red).

As an attempt to relieve the burden of human efforts, Lewis et al. (2019) proposed an unsupervised
question answering (UQA) where the answers and questions are generated in an unsupervised way. The
core of the approach is to create a cloze question from a context and then apply a translator to convert it
into a natural question. This pioneering work provides a reasonable baseline for UQA but leaves a large
room for improvement on question generation.

We have identified two anomalies of the unsupervised question generation (UQG) model, in addition
to the question-type issues (Kang et al., 2019; Lim et al., 2020). First, a large number of the tokens
in the generated questions are copied from the answer-containing sentences in the contexts, producing
copy-type questions. As a result, a QA model trained with a large number of these “easy” questions is
prone to fail when confronted with questions not directly derivable from the contexts. Second, the UQG
model sometimes creates unanswerable questions that are semantically too far away from the context,
which only acts as noise when training a QA model. An example of the two anomaly types is shown in
Table 1.

The main thrust of this paper is to demonstrate that the anomalies of UQG can be overcome by means
of relatively simple techniques, which produce higher quality questions that in turn help achieving better
QA performance. The main goal of this study is to examine the potential of the individual methods. Note
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that a more complex method of modifying the QG process itself has been proposed concurrently (Kang et
al., 2020). The key contributions of this paper are: 1) identification of the two problems associated with
UQG: excessive copying of the context in question generation and unanswerable questions, 2) methods
to mitigate the problems, which together generate higher quality questions, and 3) demonstration of the
validity of the raised issues and efficacy and generalizability of the proposed methods.

2 Limitations of Unsupervised Question Generation

The analyses in this section probe the nature of the UQG problems and set the stage for developing our
methods that alleviate the problems and help to improve the performance on various QA tasks.

2.1 Excessive Copying from Contexts

In the UQA work by Lewis et al. (2019), they generate questions by first creating cloze questions and then
converting them into natural questions. Cloze questions are generated by selecting named entities or noun
phrases from the context as the answers and converted into natural questions by utilizing Unsupervised
Neural Machine Translator (UNMT) (Lample et al., 2018).

However, this approach would make the generated natural questions highly overlapped with the cloze
questions and therefore with the contexts. This occurs because UMNT is basically an autoencoder trained
to make the inputs and the outputs identical, leading itself to copy from cloze questions as much as pos-
sible. To measure the degree to which the copying problem exists, we conduct an experiment comparing
the UQG dataset with the SQuAD 1.1 (Rajpurkar et al., 2016) dataset. We compute BLEU-4 scores
(Papineni et al., 2002) between a question and the corresponding answer-containing sentence, assuming
that the higher the BLEU score, the more copying. We observe a big difference between the two datasets,
23.35 for UQG and 3.02 for SQuAD, which proves that the UQG dataset contains an unreasonable num-
ber of copy-type questions, compared to the human-generated dataset. The excessive copying problem
would hamper QA models from eliciting answers if the context does not include enough question words.

2.2 Unanswerable Questions

Since the UQG model inherits the limitations of a seq-to-seq model, a generated question may contain a
word incoherent with the context. Despite the fact that the randomness makes the trained model robust
and generalizable, it can make the questions deviate so much from the semantics of the context that they
are unanswerable even by a human.

In order to verify the existence of this problem in the UQG dataset, we train a QA model1 on SQuAD
2.0 (Rajpurkar et al., 2018), which contains no-answer questions, so that it learns how to discern unan-
swerable questions. When tested on the UQG dataset, the trained model identifies 41.8% of the questions
as unanswerable. Since the model’s ability in identifying no-answer cases is 84.25 in F1 when tested with
the SQuAD 2.0 dev set, we can estimate that more than 30% (41.8 × 84.25) of the UQG instances are
unanswerable. Note that SQuAD 2.0 is not used in any other experiments in order to make our approach
completely “unsupervised”.

3 Methods

Given the analysis result, we propose two approaches to refine UQA questions with no supervision. The
proposed methods2 are: 1) Paraphrasing questions, and 2) Trimming undesirable questions.

3.1 Paraphrasing

Inspired by previous work on the use of paraphrasing for QA (Duboue and Chu-Carroll, 2006; Gan
and Ng, 2019), we attempt to mitigate the problem of excessive copying problem by diversifying the
questions through paraphrasing. We opt for using back-translation because it is naturally compatible
with the UQA framework. We leverage a publicly available translation system that can handle multiple

1The QA model is based on BERT-Large (Devlin et al., 2019).
2An overall pipeline procedure can be found in Algorithm 1 in Appendix A.1.
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Portuguese Italian French Spanish German Russian Arabic Hindi Chinese

BLEU 41.40 40.99 35.36 34.99 37.02 28.80 25.32 21.13 15.59

Table 2: BLEU-4 scores between original questions and paraphrased questions using different languages.

language pairs. An original UQG question Qs in English (source) is translated into Qt in one of the
target languages, which is then back-translated into English to produce Q′s.

We start with a hypothesis that copy-type questions can be maximally avoided by choosing a target
language that is most widely different from English. To verify the hypothesis, we employ a BLEU-4
score (Papineni et al., 2002) between an original question and a paraphrased question. We sample 10K
questions from the UQA dataset and paraphrase them using each of the nine different languages as the
target for back-translation. We then calculate the average BLEU-4 score for each target language (Table
2). The higher the score, the more diversified questions we generate. As expected, there is a division
between the European languages and others like Hindi, Arabic, and Chinese, with Russian in the middle.
We assume the computed BLUE scores correlate with the desired diversification.

Instead of sticking to a single target language, we can also use multiple languages to apply different
styles of diversification for English sentences. To make use of the linguistic differences between English
and the target languages, we devise a more flexible method of using the inverse of the BLEU scores. We
calculate the probability that a particular target language t should be selected, as in Equation (1), and use
it as a distribution on which a particular language is sampled for a given question instance.

P (t) =
exp( 1

BLEU(t,en)/T )∑
i exp(

1
BLEU(i,en)/T )

(1)

where T is a hyperparameter that controls the smoothness of the probability and is set to 1.2.3

3.2 Trimming Based on Confidence Scores

In an unsupervised setting, selecting the most useful subset for training is an important issue because it
is hard to guarantee the quality of the questions. In addition, the previous paraphrasing scheme (Section
3.1) might produce low-quality questions for some instances. Avoiding a supervised method for quality
enhancement, we propose to trim the questions that are likely to be either unanswerable or of copy-type
after paraphrasing. To this end, we compute the confidence scores for individual questions using a BERT
QA model trained on the 100K UQG instances to which paraphrasing has been applied.

A confidence score measures the degree to which the predicted answer A* matches the actual answer
A given the triple 〈C,A,Q〉. It reflects how comfortably the question ends up predicting the answer. A
high score indicates the question is easily answerable whereas a low score signals it is hardly answerable.
More specifically, we obtain the hidden states H of the input tokens from the BERT-QA based scorer
given the input 〈Q,C〉 and then take the logits for the start and end of the answer span:

H = BERTscorer(Q,C), H ∈ R|C|×h (2)

L = H ·W + b, W ∈ Rh×2, b ∈ R|C|×2 (3)

where h is the size of hidden layer and W is a parameter to be learned. A confidence score is calculated
by summing the logits for the start and the end tokens of the predicted answer within the context.

score = L[start,1] + L[end,2] (4)

We hypothesize that questions with excessively high or low confidence scores are copy-type or unan-
swerable questions, respectively. To trim these low-quality questions, we first sort all the triple instances

3The number of instances sampled for each language by this inverse BLEU-based method is shown in Appendix A.2
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Model SQuAD 1.1 NewsQA TriviaQA SearchQA HotpotQA Natural Questions

Lewis et al. (2019) 54.30 26.72 23.32 32.94 25.15 20.38

+ Paraphrasing 57.06 28.24 31.95 33.91 28.41 29.31
+ Trimming 58.51 28.54 32.22 35.05 29.49 31.15

Table 3: F1 scores of the baseline and the proposed approach on various QA task datasets.

Dc in ascending order of their confidence scores. We then discard the top and bottom k instances in
terms of their confidence scores, generating Dt, from which a subset of training instances are randomly
sampled to create the final train set Tfinal. In the experiments to be described in Section 4, the threshold
k and the number of instances in Tfinal are set to 300K and 100K, respectively.

4 Experiments

4.1 Experimental Settings
We use the dataset provided by Lewis et al. (2019) as our initial UQA dataset for our methods, as well as
for training the baseline model. The baseline model is implemented and evaluated in our settings, instead
of using the results provided by Lewis et al. (2019) for a fair comparison with our model in the in-domain
MRQA datasets (Fisch et al., 2019). We use 100K training instances for all the experiments except for
the investigation on the use of different target languages for the paraphrasing method (Table 4), where
we use 10K instances. For evaluation of the proposed approaches, we use SQuAD v1.1 (Rajpurkar et al.,
2016) (Table 4 and 5) and the in-domain MRQA shared task datasets (Table 3). The latter dataset includes
not only SQuAD but also many other QA datasets such as NewsQA (Trischler et al., 2017), TriviaQA
(Joshi et al., 2017), SearchQA (Dunn et al., 2017), HotpotQA (Yang et al., 2018), and NaturalQuestions
(Kwiatkowski et al., 2019).

The QA model used for most of the experiments is based on the BERT-large (Devlin et al., 2019)
model with the only exception being the investigation on the use of different target languages for back-
translation, for which we use BERT-base model (Table 4). Note that our proposed methods are model-
agnostic, meaning that it can be applied to any QA models. For the implementation, we follow the
settings in Devlin et al. (2019). We conduct the experiments five times under the same setting to obtain
reliable results. For the paraphrasing method, we use Google Translate 4 which supports the largest
number of languages for translation.

4.2 Experimental Results
In Table 3, we compare the proposed methods to the baseline of the original UQA questions (Lewis
et al., 2019) across multiple QA tasks including SQuAD 1.1 and those in the “MRQA in-Domain dev
sets” (Fisch et al., 2019). By applying the paraphrasing method (the second row), we obtain significant
improvements across all the tasks by a margin ranging from 0.98% to 8.93% in F1, with an average of
4.51%. After applying the trimming method (third row), the performance improves further, ranging from
1.82% to 10.77% in F1, with an average of 5.35%. We obtain a larger improvement for more “difficult”
tasks; HotpotQA (Yang et al., 2018) is a multi-hop task, and Natural Questions (Kwiatkowski et al.,
2019) and TriviaQA (Joshi et al., 2017) questions sometimes require linking multiple sentences to find
an answer.

Table 4 shows a comparison among different paraphrasing methods. While the performance changes
are not huge, it proves that the proposed method of sampling from the inverse BLEU scores is effective,
compared to using a particular language chosen for the lowest and highest BLEU scores. The overall
trend is that creating more diversified questions results in performance improvement.

Finally, we show that the trimming method works as intended (Table 5). The questions are divided into
three parts, bottom (0-300K), middle (300-1600K), and top (1600-1900K), according to the confidence

4We use Google Translate API from https://pypi.org/project/googletrans/
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Paraphrasing Method EM F1

Lewis et al. (2019) 38.6 47.8
Randomly sampled language 42.28 52.71

Portuguese (Highest in BLEU) 41.55 51.82
Chinese (Lowest in BLEU) 42.50 53.02

Sampled with Inverse-BLEU 43.14 53.61

Table 4: Effect of different paraphrase methods
on SQuAD 1.1 dev set with BERT-base QA.

Sampling BLEU EM F1

Random (All) 7.76 47.34 57.10

Bottom part only 7.19 45.05 55.33
Top part only 8.41 36.77 44.86

All w/o Top 7.43 48.18 57.86
All w/o Bottom 8.05 48.58 57.73

Middle part only 7.68 49.17 58.54

Table 5: Performance with confidence score in-
tervals, evaluated on the SQuAD 1.1 dev set.

scores in ascending order. Note that the division threshold is set empirically, just to see the effect of
a reasonable division. The BLEU score is measured between a question and a sentence that contains
an answer. The result implies that the questions in the top part are the closest to the answer sentences,
giving a negative impact by a big margin, whereas those in the bottom are least similar, giving a small
help when they are trimmed. We also show that the BLEU score negatively correlates with the confidence
score, which re-validates our trimming approach. In addition, the BLEU score of “Random” (to which
our paraphrasing method has been applied) is significantly reduced compared to the UQA BLEU score
(23.35) of Section 2.1, which can also support our paraphrasing approach.

5 Conclusion

We have identified two anomalies of questions from Unsupervised Question Answering (UQA) (Lewis
et al., 2019): excessive copying of the context and unanswerable questions. We proposed methods for
the two: machine-translation-based paraphrasing of questions with the novel idea of using inverse BLEU
scores and the confidence-based pruning that trims low-quality questions. We show that the proposed
approach can improve UQA performance across diverse QA tasks, providing new insights on how to
improve it.
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A Appendix

A.1 Pipeline Procedure

Algorithm 1 Overall Pipeline Procedure
Input: the original 2M dataset Do (Lewis et al., 2019)
Output: refined QA train set Tfinal (100K)

1: Dp ← paraphrasing(Do) . Apply our paraphrasing method to Do

2: Tp, D
′
p ← split(Dp) . Sample 100K training set Tp uniformly out of paraphraased

dataset Dp and obtain the rest set D′p = Dp − Tp
3: θscorer ← train(Tp) . Train a QA model (scorer) with 100K train set Tp
4: Dc ← scoring(θscorer, D

′
p) . Inference confidence scores for D′p (1,900K) using the

trained QA model θscorer
5: Dt ← trimming(Dc) . Apply our trimming method to filter out anomalies and ob-

tain filtered dataset Dt (1,300K)
6: Tfinal ← sample(Dt) . Uniformly sample train set Tfinal (100K) out of Dt

A.2 Number of Instances Sampled for Each Language
As explained in Section 3, we propose the probabilistic method of using inverse BLEU scores to choose
a language in applying back-translation for each instance. For a total of 100K instances (which is the
final QA dataset), the number of instances sampled for each language is shown in Table 6.

pt it fr es de hi ru ar cn Total

# of instances 2,135 2,135 3,027 3,055 2,688 14,542 5,121 7,698 59,599 100,000

Table 6: The number of instances sampled for each language

A.3 Case Study
We evaluated the quality of the questions by taking a random sample from the instances with an extreme
confidence score. Table 7 shows four questions with the top and the bottom confidence scores for answer
spans, according to the weakly trained QA model. The questions belonging to the top score region have
many tokens copied from the context while those in the bottom score region contain irrelevant words that
differ significantly from the meaning of the context. These cases indicate that trimming the instances
in the top and bottom regions would result in a superior dataset. We hypothesize that a low confidence
score is due to the noise of the questions whereas a high confidence score is due to a high word overlap
with the context (copy-type), both of which are likely to hurt the QA performance.
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Class Context Generated Question

Top
Confidence
Score
Region

Los Angeles shot poorly in the early
going, and the Celtics jumped out to
a first-quarter 24–12 lead which was
cut to 59–56 at halftime. ...

Where you shoot poorly in the early
going ?

... The semi-operatic innovations
of Henry Purcell did not lead to
a native operatic tradition, but
George Frideric Handel found im-
portant royal patrons and enthusi-
astic public support in England. ...

Who knew that the half-operatic in-
novations of Henry Purcell did not
lead to a native operatic tradition,
but it was an important royal pa-
trons and enthusiastic public sup-
port in England ?

Bottom
Confidence
Score
Region

In the earliest days of the BSA, some
commissioners were paid by local
benefactors and supporters to admin-
ister and “grow Scouting” on a daily
basis. ...

When and how not to, “grow the
search” you handle every day ?

The minor district (king amphoe) was
created on 18 July 1977, when the
four tambon Po, Dot, Siao and Nong
Ma were split off from Uthumphon
Phisai District. ...

Who were the four manufacturers,
Po, and Nong Ma PRH Phisqa Dis-
trict split ?

Table 7: An example showing the context and the generated question with a high and a low confidence
score, respectively. The answer span is underlined in the contexts.


